Table des matières

1 Théorie
1.1 Principes de base .. 1
 1.1.1 Lois de l’attraction universelle 1
 1.1.2 Potentiel gravitationnel 2
 1.1.3 Champ gravitationnel 3
1.2 Une référence pour la terre 4
 1.2.1 Un ellipsoïde de révolution : le sphéroïde 4
 1.2.2 Le géoïde ... 5
1.3 Densité des roches .. 6

2 Les données gravimétriques .. 9
2.1 Corrections et références .. 9
 2.1.1 Correction de dérive 9
 2.1.2 Correction de latitude 12
 2.1.3 Correction d’altitude 14
 2.1.4 Correction de plateau 15
 2.1.5 Correction de terrain 15
 2.1.6 Méthode de Nettleton 21
 2.1.7 Anomalie Bouguer 23
2.2 Levé gravimétrique .. 24
 2.2.1 Numérotage des stations 24
 2.2.2 Nivellement .. 25
 2.2.3 Résumé pour faire un levé gravimétrique 27
2.3 Instrumentation .. 28
 2.3.1 Mesures absolues 28
 2.3.2 Mesures relatives 30
2.4 Traitements ... 35
 2.4.1 Séparation régionale - résiduelle 35
 2.4.2 Prolongement vers le haut 36
 2.4.3 Exemples de superposition d’une anomalie avec une régional 36
 2.4.4 Cône de sources 39

3 Interprétation .. 41
3.1 Modèle simple .. 41
 3.1.1 La sphère .. 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2</td>
<td>Le cylindre horizontal</td>
<td>43</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Le cylindre vertical</td>
<td>44</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Le feuillet vertical</td>
<td>44</td>
</tr>
<tr>
<td>3.1.5</td>
<td>La plaque mince horizontale infinie</td>
<td>45</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Le prisme rectangulaire</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Modèle complexe</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Les méthodes graphiques</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Méthode analytique</td>
<td>49</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Gravité 3-D</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Excès de masse</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Calcul de l'excès de masse</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Unicité de la solution</td>
<td>52</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Considérations pratique</td>
<td>53</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Exemple de calcul de tonnage</td>
<td>54</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Exemple de calcul avec G-2 Marmora</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>Signature des structures géologiques en gravimétrie</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Levés régionaux et tectoniques</td>
<td>62</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Étude structurale à grande échelle</td>
<td>62</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Études régionales</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Pétrole</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Formations récifales</td>
<td>67</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Dômes de sel</td>
<td>69</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Anticlinaux</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Vallée alluvionnaire</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>Batholite gravimétrique</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Gisements métalliques</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>Archéologie, travaux publics</td>
<td>83</td>
</tr>
<tr>
<td>4.7</td>
<td>Autres Exemples</td>
<td>84</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Prolongement et filtrage ; modélisation</td>
<td>85</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Modélisation</td>
<td>88</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Applications : Étude de cas</td>
<td>93</td>
</tr>
</tbody>
</table>

5 Références | 94 |

A Correction de latitude | 95 |

B Obtenir la latitude géocentrique par rapport à la latitude géographique | 96 |

C Système de coordonnées et Théorèmes fondamentaux | 98 |
C.1	Coordonnées cartésiennes	98
C.2	Coordonnées cylindriques	98
C.3	Coordonnées sphériques	99
C.4	Théorèmes fondamentaux	100
D Exercices

D.1 Réduction de données gravimétriques 101
D.2 Corrections gravimétriques ... 103
D.3 Calcul modélisation .. 103
 D.3.1 Collecteur d’égouts ... 103
 D.3.2 Produits toxiques .. 103
Chapitre 1

Théorie

1.1 Principes de base

1.1.1 Lois de l’attraction universelle

1ère loi de Newton

Deux particules de masse m_1 et m_2 séparées par une distance r sont attirées l’une vers l’autre par une force F telle que :

$$ F = -\frac{Gm_1m_2}{r_1^2} \overrightarrow{r_1} $$ \hspace{1cm} (1.1)

où F est la force appliquée sur la masse m_2, $\overrightarrow{r_1}$, le vecteur unitaire (voir figure 1.1), r_1, la distance entre les masses m_1 et m_2, et G, la constante universelle de la gravité. r_1 et G sont données par :

$$ |\overrightarrow{r_1}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} $$

$$ G = 6.67 \times 10^{-8} \text{ dyne cm}^2/\text{g}^2 \text{ CGS} $$

$$ = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2 \text{ SI} $$ \hspace{1cm} (1.2)

Figure 1.1:
2ème Loi de Newton

Il faut appliquer une force F à une masse m pour lui faire subir une accélération a. Ceci se traduit par la relation :

$$\vec{F} = m\vec{a} \quad (1.3)$$

L’accélération d’une masse m à la surface du sol s’exprime donc par :

$$\vec{a} = -\frac{GM_T}{R_T^2} \vec{r} = \vec{g} \quad (1.4)$$

où M_T est la masse de la terre ($5,977 \times 10^{24}$ kg) et R_T le rayon moyen de la terre (6370 km). g est dite "accélération de la gravité" et vaut en moyenne 9.81 m/s^2. En l’honneur de Galilée, on a nommé l’unité d’accélération gravitationnelle le gal avec :

<table>
<thead>
<tr>
<th>1 gal</th>
<th>$= 1 \text{ cm/s}^2 = 10^{-2} m/s^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mgal</td>
<td>$= 10^{-3} \text{ gal} = 10^{-5} m/s^2$</td>
</tr>
</tbody>
</table>

La précision d’un gravimètre d’exploration est de l’ordre de 0.01 mgal ($10^{-7} m/s^2$). Les gravimètres pour les études géodynamiques ou géotechniques sont sensibles au μgal, soit $10^{-8} m/s^2$, environ le milliardième de g.

1.1.2 Potentiel gravitationnel

Le champ gravitationnel est un champ CONSERVATIF, c’est à dire que le travail fourni pour déplacer une masse dans ce champ est INDEPENDANT du chemin parcouru. Il n’est fonction que des points de départ et d’arrivée. Donc, si on revient au point de départ, la dépense énergétique est nulle.

La force qui engendre un champ conservatif peut être dérivée de la fonction scalaire du potentiel par :

$$\nabla U = \vec{g} = \frac{\vec{F}}{m_2} \quad (1.5)$$

où l’opérateur ∇ est donné par :

$$\nabla U = \frac{\partial U}{\partial x} \vec{i} + \frac{\partial U}{\partial y} \vec{j} + \frac{\partial U}{\partial z} \vec{k} \quad (1.6)$$

L’équation du potentiel nous donne donc (m_2 : masse unité) :

$$U = \int_{\infty}^{R} \vec{g} \cdot \vec{r} \, dr = -Gm_1 \int_{\infty}^{R} \frac{dr}{r^2} = Gm_1 \left[\frac{1}{r} \right]_{r=\infty}^{R} = \frac{Gm_1}{R} \quad (1.7)$$
S'il y a plusieurs masses :

\[U = \sum_{i=1}^{N} U_i = G \sum_{i=1}^{N} \frac{m_i}{R_i} \]

(1.8)

Si l'on a une distribution continue de masse dans un volume \(V \) extérieur au point (voir figure 1.3), le potentiel \(U \) au point \(P \) est :

\[U = G \int_{V} \frac{\rho}{r} \, dv \]

(1.9)

où \(\rho \) est la densité \((g/cm^3)\) et \(dv \) l'élément de volume \((cm^3)\).

Figure 1.3:

1.1.3 Champ gravitationnel

Soit une particule immobile en un point \(A \) de l'espace. Toutes les particules se trouvant autour de la masse \(m \) de \(A \) subissent une accélération (voir figure 1.4). Chaque point de l'espace est alors caractérisé par un vecteur accélération. L'ensemble de ces vecteurs constitue le Champ Gravitationnel de la masse \(m \).
1.2 Une référence pour la terre

1.2.1 Un ellipsoïde de révolution : le sphéroïde

Pour prédire le champ gravitationnel de la terre en tout point, sa forme et ses variations de densité doivent être connus. A cause de sa rotation, la terre n’est pas sphérique. Sa forme peut être approximée par une ellipsoïde de révolution quelques fois appelée sphéroïde et caractérisé par son coefficient d’aplatissement :

\[\frac{R_{eq} - R_{po}}{R_{eq}} = \frac{1}{298.247} \]

(1.10)

où \(R_{eq} \) est le rayon de la terre à l’équateur (6378.139 km) et \(R_{po} \) le rayon de la terre au pôle (voir figure 1.5).

Sur l’ellipsoïde, la gravité de référence \(g_o \) pour un point de latitude \(\varphi \) est (formule acceptée depuis 1967 par l’Union International de Geologie et de Geophysique (I.U.G.G.)) :

\[g_{th}(\varphi) = 9.7803 \left[1 + 5.2789 \times 10^{-3} \sin^2 \varphi + 23.462 \times 10^{-6} \sin^4 \varphi \right] \]

(1.11)
1.2. Une référence pour la terre

La valeur de la gravité ainsi obtenue est celle qui serait observée au niveau de la mer sur une terre de forme sphéroïdale (approximant de près sa forme réelle) et dont la densité ne varie qu’en profondeur et non pas latéralement.

La différence de 5170 mgals entre la valeur aux pôles et à l’équateur est causée par :

1. L’effet de la rotation de la terre : Plus on approche du pôle, plus la force centrifuge est faible, donc \(\tilde{g} \) est maximum (voir figure 1.6).

2. La différence entre le rayon équatorial et le rayon polaire, i.e. par la différence entre la vraie forme de la terre et une sphère.

La différence de 5170 mgals se répartit environ 2/3 pour la force centrifuge et 1/3 pour l’aplatissement.

\[\omega^2 \cos \varphi \]

Figure 1.6: \(\omega \) est la vitesse angulaire ; \(\omega^2 r \) la force centrifuge ; \(\omega^2 r \cos \varphi \) la composante dans la direction de \(\tilde{g} \)

1.2.2 Le géoïde

La formule de \(g_{th} \) donnée précédemment suppose (1) que le niveau des océan est lisse et (2) que la densité ne varie qu’en profondeur. Or, il n’en est rien. On sait que cette surface a des bosses et des creux de plusieurs dizaines de mètres et que la densité peut varier suivant toutes les directions. Ceci nous amène alors à définir le concept de géoïde que l’on définit par la surface équipotententielle correspondant à la surface des océans aux repos. Sur les continents, le géoïde correspond à la surface définie par l’eau contenue dans un canal étroit reliant les océans de part et d’autre du continent. Par définition, le géoïde est partout perpendiculaire à la verticale telle qu’indiquée par le fil à plomb.

Le géoïde et le sphéroïde ne coïncident pas en tout point. Il existe des cartes de la hauteur de géoïde par rapport au sphéroïde. Les deux plus grandes variations sont au sud de l’Inde (-105m) et en Nouvelle-Guinée (+73m).

Figure 1.7:
1.3. Densité des roches

Jusqu’ici, aucune interprétation reliant les lignes de contour du géoïde à la surface du globe (frontières océan-continents, rides mid-océaniques, etc...) ne s’est avérée possible. On a émis l’hypothèse qu’elle pourrait être expliquée par des hétérogénéités du manteau inférieur.

1.3 Densité des roches

Tableau 1.1: Densités des roches ignées (g/cm^3)

<table>
<thead>
<tr>
<th>Type de roche</th>
<th>Intervalle</th>
<th>Moyenne</th>
<th>Type de roche</th>
<th>Intervalle</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhyolite vitreuse</td>
<td>2.20-2.28</td>
<td>2.24</td>
<td>Diorite quartzée</td>
<td>2.62-2.96</td>
<td>2.79</td>
</tr>
<tr>
<td>Obsidienne</td>
<td>2.20-2.40</td>
<td>2.30</td>
<td>Diorite</td>
<td>2.72-2.99</td>
<td>2.85</td>
</tr>
<tr>
<td>Vitrophyre</td>
<td>2.36-2.53</td>
<td>2.44</td>
<td>Laves</td>
<td>2.80-3.00</td>
<td>2.90</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>2.35-2.70</td>
<td>2.52</td>
<td>Diabase</td>
<td>2.50-2.80</td>
<td>2.91</td>
</tr>
<tr>
<td>Dacite</td>
<td>2.35-2.80</td>
<td>2.58</td>
<td>Essexite</td>
<td>2.69-3.14</td>
<td>2.91</td>
</tr>
<tr>
<td>Phonolite</td>
<td>2.45-2.71</td>
<td>2.59</td>
<td>Norite</td>
<td>2.70-3.24</td>
<td>2.92</td>
</tr>
<tr>
<td>Trachyte</td>
<td>2.42-2.80</td>
<td>2.60</td>
<td>Basalte</td>
<td>2.70-3.30</td>
<td>2.99</td>
</tr>
<tr>
<td>Andésite</td>
<td>2.40-2.80</td>
<td>2.61</td>
<td>Gabbro</td>
<td>2.70-3.50</td>
<td>3.03</td>
</tr>
<tr>
<td>Néphéline- Syénite</td>
<td>2.53-2.70</td>
<td>2.61</td>
<td>Hornblende- Gabbro</td>
<td>2.98-3.18</td>
<td>3.08</td>
</tr>
<tr>
<td>Granite</td>
<td>2.50-2.81</td>
<td>2.64</td>
<td>Péridotite</td>
<td>2.78-3.37</td>
<td>3.15</td>
</tr>
<tr>
<td>Granodiorite</td>
<td>2.67-2.79</td>
<td>2.73</td>
<td>Pyroxénite</td>
<td>2.93-3.34</td>
<td>3.17</td>
</tr>
<tr>
<td>Porphyre</td>
<td>2.60-2.89</td>
<td>2.74</td>
<td>Igées acides</td>
<td>2.30-3.11</td>
<td>2.61</td>
</tr>
<tr>
<td>Syénite</td>
<td>2.60-2.95</td>
<td>2.77</td>
<td>Ignées basique</td>
<td>2.09-3.17</td>
<td>2.79</td>
</tr>
<tr>
<td>Anorthosite</td>
<td>2.64-2.94</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 1.2: Densités des roches métamorphiques (g/cm^3)

<table>
<thead>
<tr>
<th>Type de roche</th>
<th>Intervalle</th>
<th>Moyenne</th>
<th>Type de roche</th>
<th>Intervalle</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>2.50-2.70</td>
<td>2.90</td>
<td>Serpentine</td>
<td>2.40-3.10</td>
<td>2.78</td>
</tr>
<tr>
<td>Schiste</td>
<td>2.39-2.90</td>
<td>2.64</td>
<td>Ardoise</td>
<td>2.70-2.90</td>
<td>2.79</td>
</tr>
<tr>
<td>Grauwacke</td>
<td>2.60-2.70</td>
<td>2.65</td>
<td>Gneiss</td>
<td>2.59-3.10</td>
<td>2.80</td>
</tr>
<tr>
<td>Granulite</td>
<td>2.52-2.73</td>
<td>2.65</td>
<td>Schiste à chlorite</td>
<td>2.75-2.98</td>
<td>2.87</td>
</tr>
<tr>
<td>Phyllite</td>
<td>2.68-2.80</td>
<td>2.74</td>
<td>Amphibolite</td>
<td>2.90-3.04</td>
<td>2.96</td>
</tr>
<tr>
<td>Marbre</td>
<td>2.60-2.90</td>
<td>2.75</td>
<td>Éclogite</td>
<td>3.20-3.54</td>
<td>3.37</td>
</tr>
<tr>
<td>Ardoise quartzique</td>
<td>2.63-2.91</td>
<td>2.77</td>
<td>Métamorphique</td>
<td>2.40-3.10</td>
<td>2.74</td>
</tr>
</tbody>
</table>
1.3. Densité des roches

Figure 1.8: Densités moyennes d’échantillons de surface et de carottes

Tableau 1.3: Densités des minéraux (g/cm3)

<table>
<thead>
<tr>
<th>Minéral</th>
<th>Intervalle</th>
<th>Moyenne</th>
<th>Minéral</th>
<th>Intervalle</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuivre</td>
<td>-</td>
<td>8.7</td>
<td>Sulphures, Arséniures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argent</td>
<td>-</td>
<td>10.5</td>
<td>-Sphalérite</td>
<td>3.5-4.0</td>
<td>3.75</td>
</tr>
<tr>
<td>Or</td>
<td>15.6-16.4</td>
<td>-</td>
<td>-Covellite</td>
<td>-</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Malachite</td>
<td>3.9-4.03</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Charcorysite</td>
<td>4.1-4.3</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxydes, carbonates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Limonite</td>
<td>3.5-4.0</td>
<td>3.78</td>
<td>-Stannite</td>
<td>4.3-4.52</td>
<td>4.4</td>
</tr>
<tr>
<td>-Sidérite</td>
<td>3.7-3.9</td>
<td>3.83</td>
<td>-Pyrrhotine</td>
<td>4.5-4.8</td>
<td>4.65</td>
</tr>
<tr>
<td>-Rutile</td>
<td>4.18-4.3</td>
<td>4.25</td>
<td>-Molybdénite</td>
<td>4.4-4.8</td>
<td>4.7</td>
</tr>
<tr>
<td>-Manganite</td>
<td>4.2-4.4</td>
<td>4.32</td>
<td>-Marcassite</td>
<td>4.7-4.9</td>
<td>4.85</td>
</tr>
<tr>
<td>-Chromite</td>
<td>4.3-4.6</td>
<td>4.36</td>
<td>-Pyrite</td>
<td>4.9-5.2</td>
<td>5.0</td>
</tr>
<tr>
<td>-Illmenite</td>
<td>4.3-5.0</td>
<td>4.67</td>
<td>-Bornite</td>
<td>4.9-5.4</td>
<td>5.1</td>
</tr>
<tr>
<td>-Pyrolusite</td>
<td>4.7-5.0</td>
<td>4.82</td>
<td>-Millérite</td>
<td>5.3-5.65</td>
<td>5.4</td>
</tr>
<tr>
<td>-Magnétique</td>
<td>4.9-5.2</td>
<td>5.12</td>
<td>-Charcocite</td>
<td>5.5-5.8</td>
<td>5.65</td>
</tr>
<tr>
<td>-Franklinite</td>
<td>5.0-5.22</td>
<td>5.12</td>
<td>-Cobaltite</td>
<td>5.8-6.3</td>
<td>6.1</td>
</tr>
<tr>
<td>-Hématite</td>
<td>4.9-5.3</td>
<td>5.18</td>
<td>-Arsénopyrite</td>
<td>5.9-6.2</td>
<td>6.1</td>
</tr>
<tr>
<td>-Cuprite</td>
<td>5.7-6.15</td>
<td>5.92</td>
<td>-Smaltite</td>
<td>6.4-6.6</td>
<td>6.5</td>
</tr>
<tr>
<td>-Cassitérite</td>
<td>5.8-7.1</td>
<td>6.92</td>
<td>-Bismuthinite</td>
<td>6.5-6.7</td>
<td>6.57</td>
</tr>
<tr>
<td>-Wolframite</td>
<td>7.1-7.5</td>
<td>7.32</td>
<td>-Argentite</td>
<td>7.2-7.36</td>
<td>7.25</td>
</tr>
<tr>
<td>-Uraninite</td>
<td>8.0-9.97</td>
<td>9.17</td>
<td>-Niccolite</td>
<td>7.3-7.67</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Galène</td>
<td>7.4-7.6</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-Cinabre</td>
<td>8.0-8.2</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Tableau 1.4: Densités des minéraux non-métalliques et des minéraux divers (g/cm³)

<table>
<thead>
<tr>
<th>Type</th>
<th>Intervalle</th>
<th>Moyenne</th>
<th>Type</th>
<th>Intervalle</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neige</td>
<td>-</td>
<td>0.125</td>
<td>Gypse</td>
<td>2.20-2.60</td>
<td>2.35</td>
</tr>
<tr>
<td>Pétrole</td>
<td>0.60-0.90</td>
<td>-</td>
<td>Bauxite</td>
<td>2.30-2.55</td>
<td>2.45</td>
</tr>
<tr>
<td>Glace</td>
<td>2.88-0.92</td>
<td>-</td>
<td>Kaolinite</td>
<td>2.20-2.63</td>
<td>2.53</td>
</tr>
<tr>
<td>Eau de mer</td>
<td>1.01-1.05</td>
<td>-</td>
<td>Orthoclase</td>
<td>2.50-2.60</td>
<td>-</td>
</tr>
<tr>
<td>Tourbe</td>
<td>-</td>
<td>1.05</td>
<td>Quartz</td>
<td>2.50-2.70</td>
<td>2.65</td>
</tr>
<tr>
<td>Asphalte</td>
<td>1.10-1.20</td>
<td>-</td>
<td>Calcite</td>
<td>2.60-2.70</td>
<td>-</td>
</tr>
<tr>
<td>Lignite</td>
<td>1.10-1.25</td>
<td>1.19</td>
<td>Talc</td>
<td>2.70-2.80</td>
<td>2.71</td>
</tr>
<tr>
<td>Tourbe</td>
<td>1.20-1.50</td>
<td>1.32</td>
<td>Anhydrite</td>
<td>2.90-3.00</td>
<td>2.93</td>
</tr>
<tr>
<td>Anthracite</td>
<td>1.34-1.80</td>
<td>1.50</td>
<td>Biotite</td>
<td>2.70-3.20</td>
<td>2.92</td>
</tr>
<tr>
<td>Brique</td>
<td>-</td>
<td>1.50</td>
<td>Magnésite</td>
<td>2.90-3.12</td>
<td>3.03</td>
</tr>
<tr>
<td>Carnallite</td>
<td>1.60-1.70</td>
<td>-</td>
<td>Fluorine</td>
<td>3.01-3.25</td>
<td>3.14</td>
</tr>
<tr>
<td>Soufre</td>
<td>1.90-2.10</td>
<td>-</td>
<td>Épidote</td>
<td>3.25-3.50</td>
<td>-</td>
</tr>
<tr>
<td>Craie</td>
<td>1.53-2.60</td>
<td>2.01</td>
<td>Diamant</td>
<td>-</td>
<td>3.52</td>
</tr>
<tr>
<td>Graphite</td>
<td>1.90-2.30</td>
<td>2.15</td>
<td>Corindon</td>
<td>3.90-4.10</td>
<td>4.0</td>
</tr>
<tr>
<td>Sel gemme</td>
<td>2.10-2.60</td>
<td>2.22</td>
<td>Barite</td>
<td>4.30-4.70</td>
<td>4.47</td>
</tr>
</tbody>
</table>

Tableau 1.5: Densités des matériaux rocheux typiques (g/cm³)

<table>
<thead>
<tr>
<th>Roches IIgnées</th>
<th>Roches Ignotes</th>
<th>Nb échan.</th>
<th>Intervalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite</td>
<td>155</td>
<td>2.516-2.809</td>
<td></td>
</tr>
<tr>
<td>Granodiorite</td>
<td>11</td>
<td>2.668-2.785</td>
<td></td>
</tr>
<tr>
<td>Syénite</td>
<td>24</td>
<td>2.630-2.899</td>
<td></td>
</tr>
<tr>
<td>Diorite</td>
<td>13</td>
<td>2.721-2.960</td>
<td></td>
</tr>
<tr>
<td>Norite</td>
<td>11</td>
<td>2.720-3.020</td>
<td></td>
</tr>
<tr>
<td>Gabbro</td>
<td>27</td>
<td>2.850-3.120</td>
<td></td>
</tr>
<tr>
<td>Diabase</td>
<td>40</td>
<td>2.804-3.110</td>
<td></td>
</tr>
<tr>
<td>Péridotite</td>
<td>3</td>
<td>3.152-3.276</td>
<td></td>
</tr>
<tr>
<td>Dunite</td>
<td>1</td>
<td>3.289</td>
<td></td>
</tr>
<tr>
<td>Pyroxénite</td>
<td>8</td>
<td>3.10-3.318</td>
<td></td>
</tr>
<tr>
<td>Anorthosite</td>
<td>12</td>
<td>2.640-2.920</td>
<td></td>
</tr>
</tbody>
</table>

Valeurs prises dans :
“Handbook of Pysical Constants”,
edité par Francis Birch,
Geological Society of America, Special Paper 36, 1942.
Chapitre 2

Les données gravimétriques

2.1 Corrections et références

Afin d’obtenir les variations du champ gravitationnel dues à des causes géologiques, il est nécessaire de corriger nos lectures de toutes les autres causes extérieures pouvant les influencer (dérive de l’appareil, marée, ellipticité de la terre ...).

2.1.1 Correction de dérive

Par cette correction, on tente d’éliminer l’influence apportée sur les mesures par les marées (figure 2.1) et la fatigue de l’instrument.

Dans ce but, il est nécessaire de suivre un certain cheminement entre les stations de lectures. Dans la pratique, on fait une série de mesures en suivant un cheminement en boucle : la série débute habituellement en un point donnée et se termine à ce même point (figure 2.2). Le point de départ de la boucle est normalement relié à une station de base.
En général, les mesures du début et de la fin à la station de base ne sont pas semblables. Cette différence, appelée dérive, est due en partie au gravimètre, en partie au marée lunaire. Les valeurs mesurées sont donc entravées d’erreurs puisqu’une de leurs composantes provient de la dérive et ne reflète pas un changement dans la valeurs de g dû à des hétérogénéités du sous-sol.

La correction est faite en supposant que la dérive est linéaire dans le temps. Donc, si on est passé à la station de base, aux temps T_1 et T_2 et que les valeurs mesurées étaient respectivement V_1 et V_2, le taux de dérive TD est défini par :

$$TD = \frac{V_2 - V_1}{T_2 - T_1}$$ \hspace{1cm} (2.1)

Lorsque la dérive est positive, c’est que les mesures ont été surestimées, il faut donc les diminuer. La correction de dérive sera négative. Inversement, dans le cas où la dérive est négative, les mesures sont sous-estimées et la correction devra être positive.

Ainsi, toute valeur V prise au temps T (où $T_1 \leq T \leq T_2$) est corrigée par la formule suivante :

$$V_{cor} = V_{lu} - \frac{V_2 - V_1}{T_2 - T_1} \times (T - T_1)$$ \hspace{1cm} (2.2)

Exemple :

Le taux de dérive est :

$$TD = \frac{1031.0 - 1032.1}{13h05 - 12h15} = -\frac{1.1}{50} = -0.022 \text{ div./minutes}$$

Donc, pour la lecture de la station 4, prise 16 minutes après la 1ère lecture de la station 1, la correction est de :

$$16 \times (-0.022) = -0.352 \text{ div.} \simeq -0.4 \text{ div.}$$
Le principe demeure le même si au lieu de boucler sur la station de départ, la dernière mesure se fait sur une autre station de base (figure 2.3). Évidemment, les stations initiales et finales doivent auparavant avoir été reliées entre elles.

![Diagram of base stations and measurements over time](image)

Figure 2.3:

Si lors de l’établissement des 2 stations de bases on a trouvé des valeurs égales à ce que la différence entre les nouvelles valeurs observées V_1 et V_2 soit semblable à celle qui existe entre M_1 et M_1, obtenus antérieurement à V_1 et V_2. La dérive est égale à :

\[
\text{dérive} = \text{différence réelle} - \text{différence observée} \\
= (M_2 - M_1) - (V_2 - V_1) \tag{2.3}
\]

De la même manière qu’auparavant, la formule de correction est :

\[
V_{\text{cor}} = V_{lu} + \frac{(M_2 - M_1) - (V_2 - V_1)}{T_2 - T_1} \times (T - T_1) + (M_1 - V_1) \tag{2.4}
\]

Notons le terme supplémentaire à la fin de l’équation, $M_1 - V_1$. Il a pour but de ramener les valeurs à un niveau de référence semblable pour chaque partie du levé.

Exemple : Soit la ligne de base suivante :

<table>
<thead>
<tr>
<th>Station</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL1</td>
<td>1030.1</td>
</tr>
<tr>
<td>BL2</td>
<td>1032.0</td>
</tr>
<tr>
<td>BL3</td>
<td>1031.7</td>
</tr>
<tr>
<td>BL4</td>
<td>1032.4</td>
</tr>
</tbody>
</table>

et les mesures suivantes prises le lendemain :

...
La dérive est de 1.1 division (1032.0-1030.1-1028.7+1027.9), et le taux de correction est de 0.011 div./minute (1.1/1h40). La correction de niveau vaut 2.2 div. (1030.1-1027.9). Ainsi, pour la station BL1 (2ème journée) :

\[V_{\text{cor}} = 1027.9 + 0.011 \times 0 + 2.2 = 1030.1 \equiv M_1 \]

et pour la station BL2 (2ème journée) :

\[V_{\text{cor}} = 1028.7 + 0.011 \times 100 + 2.2 = 1032.0 \equiv M_2 \]

2.1.2 Correction de latitude

Cette correction tient compte des variations de \(g \) avec la latitude dues à la rotation de la terre et à son aplatissement.

À partir des mesures géodésiques mondiales, on sait que la terre est un ellipsoïde de révolution presque parfait. Sur cette surface, le champ gravitationnel peut être décrit par l’équation suivante (I.U.G.G. 1967) :

\[g_{th}(\varphi) = 978.03 \left[1 + 5.2789 \times 10^{-3} \sin^2 \varphi + 23.462 \times 10^{-6} \sin^4 \varphi \right] \text{ gals} \quad (2.5) \]

où \(g_{th}(\varphi) \) est la valeur du champ au point de latitude géocentrique \(\varphi \). La correction \(\Delta L \) pour un déplacement \(dl \) suivant un méridien est donc :

\[\Delta L = \frac{dg_{th}}{dl} \cdot dl \quad (2.6) \]

avec

\[dl = R(\varphi) \, d\varphi \approx R_e \, d\varphi \quad (2.7) \]

où \(R_e \) est le rayon équatorial de la terre (6378 km).

Finalement,

\[\Delta L = 0.081 \, dl \sin 2 \varphi \, \text{mgal/100m} : (N \to S) \quad (2.8) \]

L’équation est linéaire (i.e. \(\varphi = \text{cte} \)) sur une distance d’environ 1.5 km. Comme \(g_{th} \) est plus fort aux pôles qu’à l’équateur, il faut additionner \(\Delta L \) (correction positive) pour un déplacement N→S. Noter que pour obtenir une précision acceptable, on doit chercher à positionner les différentes stations avec une précision d’une dizaine de mètres (par exemple à partir de photos-aériennes). Pour une précision de 0.01 mgal, il faut connaître à ± 10 m la distance entre 2 stations séparées de 100 m si \(\varphi = 45^\circ \). Il est à noter que les corrections sont
2.1. Corrections et références

positives lorsque les stations se localisent au sud de la ligne de référence et négative pour celles se situant au nord. Aucune correction n’est apportée pour un cheminement est-ouest. Dans un levé local, les corrections ne sont pas calculées pour chacune des stations à partir de la formule générale ; mais sont plutôt déterminées à partir d’une grille proprement graduée. Par exemple, supposons un levé de gravimétrie à effectué autour de la latitude géographique 48° 44’N. L’échelle des cartes de travail est de 1 : 2000 (20m/cm) et nos stations de mesure sont espacées de 25m.
Dans un premier temps, il faut convertir la latitude géographique en latitude géocentrique. Pour cela, on utilise la figure 2.4. On a θ = 48° 44’, ce qui donne une correction de 0.192. Alors, φ = 48.733 - 0.192 = 48.541°. On trouve alors la correction de latitude correspondante, soit :

\[ΔL = 0.081 \, dl \sin(2φ) = 0.08038 \, dl \, \text{mgal/100m} \, (N \rightarrow S) \]

Ainsi, chaque déplacement de 1.25 cm du nord vers le sud (N→S) entraînera une correction de 0.02 mgal (0.08038 x 25). La grille peut donc être graduée en multiples de 0.02, la correction zéro étant affectée aux stations se trouvant à la latitude 48° 44’N (voir figure 2.5).

Figure 2.4:
2.1.3 Correction d’altitude

Les lectures d’un levé gravimétrique ne sont pas forcément prises au-dessus d’un terrain plat. Or plus on se rapproche du niveau de référence, plus g augmente. Les mesures obtenues présentent donc des variations qui ne sont dues qu’à la position de la station de mesure et non pas à des hétérogénéités du sous-sol. Il faut donc corriger les mesures.

Puisque r est le rayon de la terre au niveau de référence, si on se déplace d’une hauteur h par rapport à ce niveau de référence, alors

$$g_h = \frac{Gm}{(r+h)^2} = \frac{Gm}{r^2(1 + 2(h/r) + (h/r)^2)}$$

(2.10)

Puisque l’on a $r \gg h$, alors :

$$g_h = \frac{Gm(1 - 2h/r)}{r^2} = g_r - 2hg_r/r$$

(2.11)

et donc

$$g_h - g_r = -2hg_r/r$$

(2.12)

En prenant r comme rayon moyen de la terre, la correction à faire est donnée par (h positif vers le haut) :

$$\Delta_h = 0.3086h \text{ mgal/m ; (} h > 0)$$

(2.13)

Donc Δ_h est positif si on est au-dessus du référentiel et négatif si on est en-dessous. Pour une précision d’environ 0.01 mgal, il faut connaître à \pm 3 cm la hauteur de la station par rapport au référentiel.
2.1.4 Correction de plateau

La correction de plateau tient compte de la masse comprise entre le référentiel et la station de mesure. Pour une tranche de hauteur \(h \), l’attraction est donnée par :

\[
\Delta_p = 2\pi G \rho_B h
\]
(2.14)

où \(G \) = constante universelle de la gravitation et \(\rho_B \) est la densité présumée de la croûte terrestre (\(\rho_B = 2.67 \text{ g/cm}^3 \) en moyenne).

Comme \(\Delta_p \) augmente lorsque \(h \) augmente, il faut soustraire \(\Delta_p \) lorsque \(h > 0 \) et donc :

\[
\Delta_p = -0.04191 \rho_B h \text{ mgal/m ; (} h > 0 \text{)}
\]
(2.15)

Il faut connaître précisément l’élévation de l’appareil à chaque station (\(h = \pm 10 \text{ cm} \)) si on veut une précision de \(\pm 0.01 \text{ mgal} \).

Le plus souvent, on combine la correction d’altitude et la correction de plateau pour obtenir ce que l’on appelle alors la correction de Bouguer (attention, ceci n’est pas l’anomalie de Bouguer) :

\[
\Delta_{hB} = (0.3086 - 0.04191 \rho_B) h \text{ mgal/m ; (} h > 0 \text{)}
\]
(2.16)

Si l’on choisit \(\rho_B = 2.67 \text{ g/cm}^3 \), on obtient :

\[
\Delta_{hB} = 0.197 h \text{ mgal/m ; (} h > 0 \text{)}
\]
(2.17)

2.1.5 Correction de terrain

Pour faire la correction de Bouguer, on enlève l’attraction d’une tranche de terrain d’épaisseur \(h \). Si on ne peut approximer par une tranche uniforme, il faut intégrer numériquement d’une part les parties qui dépassent et d’autre part les parties qui manquent.

![Figure 2.6](image)

Au point P (voir figure 2.6), l’intégration sur les morceaux en trop et en manque est donnée par :

\[
\Delta g_t = \int_V G \rho \frac{z_0}{x_0^2 + y_0^2 + z_0^2} dv
\]
(2.18)
Pour les morceaux en trop, h et ρ sont positifs et pour les morceaux en manque, h et ρ sont négatifs. Ainsi, la correction de terrain est toujours **positive** puisqu’elle a pour effet de diminuer la gravité au point P.

L’intégration se fait numériquement au moyen d’un calculateur utilisant des cartes topographiques numérisées. L’expression donnant l’attraction gravitationnelle g, sur l’axe d’un cylindre creux et d’épaisseur $r_2 - r_1$ est la suivante (voir figure 2.7) :

$$[H] \Delta t_i = \frac{2\pi G \rho}{n \left[r_2 - r_1 + \sqrt{r_1^2 - h^2} - \sqrt{r_2^2 - h^2} \right]}$$ (2.19)

où Δt_i est l’attraction d’un des secteurs du cylindre, h la hauteur du cylindre, ρ la densité du cylindre et n le nombre de secteurs dont le cylindre a été divisé.

La correction totale pour le cylindre entier est :

$$\Delta T = \sum \Delta t_i$$ (2.20)

Figure 2.7:

En général, au lieu d’utiliser la formule donnée précédemment, on utilise un réticule (voir figure 2.8) que l’on superpose aux cartes topographiques et des tables préparées par Hammer (et complétées par Bible). Ces tables (tableaux 2.1 et 2.2) nous donnent, pour différentes valeurs de h, les corrections en mgal qu’il nous faut apporter pour chacun des secteurs du réticule.
Figure 2.8: Réticule de Hammer ; Zone externe : zone J
Tableau 2.1: Tables de Hammer, pour la correction de relief ; densité : $\rho = 2 \text{g/cm}^3$; Zones B à H ; Correction : $\sum t_i \times 0.01 \text{mgal}$

<table>
<thead>
<tr>
<th>Zones</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secteur</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Rayon</td>
<td>2 à</td>
<td>16.6 à</td>
<td>53.3 à</td>
<td>170.1 à</td>
<td>390 à</td>
<td>895 à</td>
<td>1529 à</td>
</tr>
<tr>
<td></td>
<td>16.5 m</td>
<td>53.3 m</td>
<td>170.1 m</td>
<td>390 m</td>
<td>895 m</td>
<td>1529 m</td>
<td>2615 m</td>
</tr>
<tr>
<td>t_i</td>
<td>\pm h en m</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.0 à 0.3</td>
<td>0.0 à 1.3</td>
<td>0.0 à 2.4</td>
<td>0.0 à 5.5</td>
<td>0.0 à 8.2</td>
<td>0.0 à 17.6</td>
<td>0.0 à 22.9</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3 à 0.6</td>
<td>1.3 à 2.3</td>
<td>2.4 à 4.1</td>
<td>5.5 à 9.1</td>
<td>8.2 à 14.0</td>
<td>17.6 à 30.5</td>
<td>22.9 à 40.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.6 à 0.8</td>
<td>2.3 à 3.0</td>
<td>4.1 à 5.3</td>
<td>9.1 à 12.0</td>
<td>14.0 à 18.3</td>
<td>30.5 à 39.3</td>
<td>40.0 à 51.5</td>
</tr>
<tr>
<td>0.3</td>
<td>0.8 à 0.9</td>
<td>3.0 à 3.5</td>
<td>5.3 à 6.3</td>
<td>12.0 à 14.3</td>
<td>18.3 à 21.6</td>
<td>39.3 à 46.6</td>
<td>51.5 à 61.0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.9 à 1.0</td>
<td>3.5 à 4.0</td>
<td>6.3 à 7.1</td>
<td>14.3 à 16.2</td>
<td>21.6 à 24.4</td>
<td>46.6 à 52.7</td>
<td>61.0 à 68.9</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0 à 1.1</td>
<td>4.0 à 4.4</td>
<td>7.1 à 7.8</td>
<td>16.2 à 17.7</td>
<td>24.4 à 27.0</td>
<td>52.7 à 58.0</td>
<td>68.9 à 76.0</td>
</tr>
<tr>
<td>1</td>
<td>1.1 à 2.0</td>
<td>4.4 à 7.3</td>
<td>7.8 à 13.1</td>
<td>17.7 à 29.6</td>
<td>27.0 à 45.0</td>
<td>58.0 à 97.0</td>
<td>76.0 à 126</td>
</tr>
<tr>
<td>2</td>
<td>2.0 à 2.7</td>
<td>7.3 à 9.8</td>
<td>13.1 à 17.0</td>
<td>29.6 à 38.3</td>
<td>45.0 à 58.0</td>
<td>97.0 à 125</td>
<td>126. à 163</td>
</tr>
<tr>
<td>3</td>
<td>2.7 à 3.5</td>
<td>9.8 à 11.9</td>
<td>17.0 à 20.2</td>
<td>38.3 à 45.4</td>
<td>58.0 à 68.0</td>
<td>125 à 148</td>
<td>163 à 193</td>
</tr>
<tr>
<td>4</td>
<td>3.5 à 4.2</td>
<td>11.9 à 13.8</td>
<td>20.2 à 23.1</td>
<td>45.4 à 51.8</td>
<td>68.0 à 77.0</td>
<td>148 à 158</td>
<td>193 à 219</td>
</tr>
<tr>
<td>5</td>
<td>4.2 à 5.0</td>
<td>13.8 à 15.6</td>
<td>23.1 à 25.7</td>
<td>51.8 à 57.6</td>
<td>77.0 à 86.0</td>
<td>158 à 186</td>
<td>219 à 242</td>
</tr>
<tr>
<td>6</td>
<td>5.0 à 5.7</td>
<td>15.6 à 17.4</td>
<td>25.7 à 28.1</td>
<td>57.6 à 62.9</td>
<td>86.0 à 94.0</td>
<td>186 à 202</td>
<td>242 à 263</td>
</tr>
<tr>
<td>7</td>
<td>5.7 à 6.5</td>
<td>17.4 à 19.1</td>
<td>28.1 à 30.4</td>
<td>62.9 à 67.8</td>
<td>94.0 à 101</td>
<td>202 à 213</td>
<td>263 à 283</td>
</tr>
<tr>
<td>8</td>
<td>6.5 à 7.3</td>
<td>19.1 à 20.8</td>
<td>30.4 à 32.6</td>
<td>67.8 à 72.4</td>
<td>101 à 108</td>
<td>213 à 233</td>
<td>283 à 302</td>
</tr>
<tr>
<td>9</td>
<td>7.3 à 8.2</td>
<td>20.8 à 22.6</td>
<td>32.6 à 34.7</td>
<td>72.4 à 76.8</td>
<td>108 à 114</td>
<td>233 à 247</td>
<td>302 à 320</td>
</tr>
<tr>
<td>10</td>
<td>8.2 à 9.1</td>
<td>22.6 à 24.4</td>
<td>34.7 à 36.7</td>
<td>76.8 à 81.1</td>
<td>114 à 120</td>
<td>247 à 260</td>
<td>320 à 337</td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>24.4 à 26.1</td>
<td>36.7 à 38.7</td>
<td>81.1 à 85.3</td>
<td>120 à 126</td>
<td>260 à 272</td>
<td>337 à 353</td>
</tr>
<tr>
<td>12</td>
<td>...</td>
<td>26.1 à 27.9</td>
<td>38.7 à 40.6</td>
<td>85.3 à 89.3</td>
<td>126 à 131</td>
<td>272 à 284</td>
<td>353 à 368</td>
</tr>
<tr>
<td>13</td>
<td>...</td>
<td>27.9 à 29.7</td>
<td>40.6 à 42.6</td>
<td>89.3 à 93.2</td>
<td>131 à 137</td>
<td>284 à 296</td>
<td>368 à 383</td>
</tr>
<tr>
<td>14</td>
<td>...</td>
<td>29.7 à 31.6</td>
<td>42.6 à 44.5</td>
<td>93.2 à 97.0</td>
<td>137 à 142</td>
<td>296 à 308</td>
<td>383 à 397</td>
</tr>
<tr>
<td>15</td>
<td>...</td>
<td>31.6 à 33.5</td>
<td>44.5 à 46.4</td>
<td>97.0 à 100.8</td>
<td>142 à 147</td>
<td>308 à 319</td>
<td>397 à 411</td>
</tr>
</tbody>
</table>
2.1. Corrections et références

Tableau 2.2: Tables de Hammer (suite); Zones I à M.

<table>
<thead>
<tr>
<th>Zones</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secteur</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Rayon</td>
<td>2615 à 4470</td>
<td>4470 à 6650</td>
<td>6650 à 9900</td>
<td>9900 à 14750</td>
<td>14750 à 21950</td>
</tr>
<tr>
<td>t_i</td>
<td>±h en m</td>
</tr>
<tr>
<td>0</td>
<td>0 à 30.2</td>
<td>0 à 51</td>
<td>0 à 62</td>
<td>0 à 76</td>
<td>0 à 93</td>
</tr>
<tr>
<td>0.1</td>
<td>30.2 à 52.1</td>
<td>51 à 88</td>
<td>62 à 108</td>
<td>76 à 131</td>
<td>93 à 160</td>
</tr>
<tr>
<td>0.2</td>
<td>52.1 à 67.1</td>
<td>88 à 114</td>
<td>108 à 139</td>
<td>131 à 170</td>
<td>160 à 207</td>
</tr>
<tr>
<td>0.3</td>
<td>67.1 à 79.6</td>
<td>114 à 135</td>
<td>139 à 165</td>
<td>170 à 201</td>
<td>207 à 245</td>
</tr>
<tr>
<td>0.4</td>
<td>79.6 à 90.2</td>
<td>135 à 153</td>
<td>165 à 187</td>
<td>201 à 228</td>
<td>245 à 278</td>
</tr>
<tr>
<td>0.5</td>
<td>90.2 à 100</td>
<td>153 à 169</td>
<td>187 à 206</td>
<td>228 à 252</td>
<td>278 à 307</td>
</tr>
<tr>
<td>1</td>
<td>100 à 164</td>
<td>169 à 280</td>
<td>206 à 341</td>
<td>252 à 416</td>
<td>307 à 507</td>
</tr>
<tr>
<td>2</td>
<td>164 à 213</td>
<td>280 à 361</td>
<td>341 à 441</td>
<td>416 à 537</td>
<td>507 à 655</td>
</tr>
<tr>
<td>3</td>
<td>213 à 253</td>
<td>361 à 427</td>
<td>441 à 521</td>
<td>537 à 636</td>
<td>655 à 776</td>
</tr>
<tr>
<td>4</td>
<td>253 à 287</td>
<td>427 à 485</td>
<td>521 à 591</td>
<td>636 à 721</td>
<td>776 à 880</td>
</tr>
<tr>
<td>5</td>
<td>287 à 317</td>
<td>485 à 537</td>
<td>591 à 654</td>
<td>721 à 797</td>
<td>880 à 978</td>
</tr>
<tr>
<td>6</td>
<td>317 à 344</td>
<td>537 à 584</td>
<td>654 à 711</td>
<td>797 à 867</td>
<td>973 à 1058</td>
</tr>
<tr>
<td>7</td>
<td>344 à 369</td>
<td>584 à 628</td>
<td>711 à 764</td>
<td>867 à 932</td>
<td>1058 à 1136</td>
</tr>
<tr>
<td>8</td>
<td>369 à 393</td>
<td>628 à 669</td>
<td>764 à 814</td>
<td>932 à 993</td>
<td>1136 à 1210</td>
</tr>
<tr>
<td>9</td>
<td>393 à 416</td>
<td>669 à 708</td>
<td>814 à 861</td>
<td>993 à 1050</td>
<td>1210 à 1280</td>
</tr>
<tr>
<td>10</td>
<td>416 à 438</td>
<td>708 à 745</td>
<td>861 à 906</td>
<td>1050 à 1104</td>
<td>1280 à 1346</td>
</tr>
<tr>
<td>11</td>
<td>438 à 459</td>
<td>745 à 780</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12</td>
<td>459 à 479</td>
<td>780 à 813</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>13</td>
<td>479 à 498</td>
<td>813 à 845</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>14</td>
<td>498 à 516</td>
<td>845 à 877</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>516 à 534</td>
<td>877 à 908</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Les différentes étapes à exécuter pour effectuer la correction sont :

1. Localiser la station à corriger sur une carte topographique assez précise.
2. Centrer le réticule sur ce point.
3. Déterminer l’élévation moyenne de chacun des secteurs de l’abaque.
4. Prendre la différence positive ou négative entre l’élévation de la station considérée et chacun des secteurs.
5. Pour chacun des secteurs, à l’aide de la table de Hammer, calculer la correction à apporter (la correction est toujours positive quel que soit le signe).
6. Additionner la contribution de chacun des secteurs et convertir à la densité moyenne utilisée pour le levé (car les tables ont été calculées en supposant une densité de 2 g/cm3). Si l’on doit adopter une autre valeur ρ', la correction évaluée d’après les tables doit être multipliée par $\frac{\rho}{2}$.

Exemple de correction de relief : Un réticule de Hammer a été superposé à la carte topographique (figure 2.9) et l’altitude moyenne de chacun des secteurs a été noté dans le
réticule. La table de Hammer a alors été utilisée afin de calculer les corrections de terrain en centième de milligal. En additionnant les corrections de chacun des secteurs (voir tableau 2.9), on obtient une correction totale de 0.033 mgal.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Secteurs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.3 / 1.0 / 0.2 / 0.4</td>
<td>1.9</td>
</tr>
<tr>
<td>C</td>
<td>0.1 / 0.5 / 0.3 / 0.1 / 0.3 / 0.1</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Il est évident que l’on ne peut songer à utiliser la même carte topographique pour évaluer les altitudes moyennes des zones B et M; à l’échelle 1 : 1000, une distance de 2 mètres est représentée par 2 mm alors qu’une distance de 22 km conduirait à un abaque de 22 m de rayon; au 1 : 100,000, ces mêmes longueurs deviennent respectivement 0,02 mm et 22 cm. La première échelle convient pour évaluer l’influence des zones centrales, alors que la seconde n’est utilisable que pour les zones éloignées. Il sera donc nécessaire, dans tous les cas où l’on calculera complètement la correction de relief, de la scinder en plusieurs parties.

Jusqu’à présent, nous avons admis que la surface de référence avait la cote 0. En réalité,
pour réduire le caractère imparfait de la correction de Bouguer, on sera souvent amené à
donner à la surface de référence la cote \(Z_o \) de la station la plus basse de l’étude. Dès lors,
l’épaisseur des tranches de terrain intéressées par la correction de Bouguer sera réduite de la
quantité \(Z_o \), et le rayon à donner à la zone extérieure pour effectuer les corrections de terrain
se trouvera également diminué. Ce procédé est d’ailleurs plus justifié, pour une prospection
d’étendue limitée, que celui consistant à adopter systématiquement le géoïde comme surface
de référence.

Nous avons vu que l’influence des défauts et des excés de masse était de même sens ; il
convient, en conséquence, de traiter de manière particulière les compartiments présentant
à la fois des altitudes plus élevées et plus faibles que celle de la station. Le plus souvent,
il sera possible d’éviter une telle disposition par une rotation appropriée de l’abaque (bien
entendu, ce dernier doit conserver le même azimut pour tout le calcul relatif à une même
zone), conduisant par exemple à placer la courbe de niveau de cote \(Z \) le long d’un rayon
vecteur. Si la chose est impossible, on devra (pour chaque compartiment présentant cette
particularité) déterminer séparément l’altitude moyenne des terrains de cote supérieure à \(Z \)
et celle des terrains de cote inférieure, puis calculer la moyenne des deux valeurs absolues
des différences avec \(Z \), pondérée en fonction des surfaces occupées dans chaque cas.
Remarques : Le calcul de la correction d’une station est assez long et peut prendre entre 1/2
heure et 1 heure dépendant de la topographie. Ce temps peut être diminué à 15 minutes
grace aux remarques qui suivent :

1. De faibles irrégularités dans la topographie n’ont que peu d’effet sur la gravité et
peuvent être négligées. (Moins de 1/20 de la distance à la station, moins de 1m
d’élévation en-dedans de 2m de rayon autour de la station).

2. Afin de simplifier les corrections de terrain, l’emplacement des différentes stations doit
être judicieux : éviter les ravins, les pieds de montagne ... car ce sont les dénivelations
les plus près de la station qui ont le plus d’influence.

Le tableau 2.3 résume, pour les différentes zones, les évolutions de la topographie qui en-
traînent une correction inférieure à 0.01 mgal :

<table>
<thead>
<tr>
<th>Zones</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±13</td>
<td>±30</td>
<td>±45</td>
<td>±97</td>
<td>±126</td>
<td>±164</td>
<td>±280</td>
<td>±341</td>
</tr>
</tbody>
</table>

Tableau 2.3: Élévation de non-influence

2.1.6 Méthode de Nettleton

Pour la correction de Bouguer, il est important d’essayer de définir la densité \(\rho_B \) à mieux
que 0.1 g/cm³ près. En ce qui concerne la correction de relief, le rôle joué par \(\rho_B \) est moins
considérable : en effet, on observe rarement une différence d’un milligal entre stations voisines ; une variation de 0.2 sur la densité n’introduira dans ces conditions qu’un écart de l’ordre de 0.10 mgal sur une valeur qui n’est souvent définie qu’avec une moins bonne approximation.

La densité \(\rho_B \) peut être déterminée à partir des données gravimétriques même. Une fois la
correction d’altitude appliquée, l’anomalie offre une corrélation très forte avec la topographie du terrain. La méthode de Nettleton consiste donc à représenter, sur une même figure,
2.1. Corrections et références

un profil topographique et les profils de l’anomalie de Bouguer qui lui correspondent, calculés pour plusieurs densités (voir figure 2.10 pour un exemple). On choisit une région au relief assez accidenté pour que le rôle de la correction d’altitude soit déterminant vis-à-vis de la forme des profils de gravité. Parmi ceux-ci, une partie reflètera assez fidèlement les irrégularités topographiques (densités 2.4 à 2.8) et une autre donnera une image “inversée” du relief (densités 1.8 à 2.2).

Figure 2.10: Exemple d’application de la méthode de Nettleton

Dans les deux cas, il existera une certaine corrélation entre les formes topographiques et gravimétriques; le profil le plus satisfaisant sera évidemment celui qui se situerait entre les deux groupes précédemment définis, et pour lequel, visiblement, la corrélation entre le relief et l’anomalie de Bouguer sera la moins nette. Un certain nombre de profils de ce genre, judicieusement distribués sur toute l’étendue prospectée, conduiraient à différentes valeurs de densité; si ces valeurs ne sont pas trop dispersées, leur moyenne pourra être retenue comme caractérisant au mieux la région, et les corrections d’altitude et de relief seront calculées en utilisant cette valeur.

L’emploi de cette méthode implique une condition rarement réalisée dans la nature, en tout cas invérifiable : définir comme le plus probable le profil gravimétrique reflétant le moins
l’allure de la topographie, c’est admettre implicitement qu’il n’y a pas à l’aplomb de ce profil d’anomalies d’origine géologique dont la forme soit en relation avec le relief.
Il y a donc lieu de préciser dans quel cas cette méthode offre le plus de chances de conduire à un résultat convenable. Ce sera évidemment lorsque les conditions géologiques permettent d’affirmer qu’il ne peut exister aucune relation entre la forme du relief et celle des couches profondes. Un très bon exemple de réalisation d’une telle condition est fourni par les dunes de sable dont le relief, d’ailleurs variable, est déterminé avant tout par l’orientation et le régime des vents. Ou encore, si le relief est assez tourmenté pour que l’on observe un creux relatif au voisinage du sommet d’une colline ou une ondulation au centre d’une colline ou une ondulation au centre d’une vallée, il est assez probable que de tels mouvements secondaires, résultant en général de l’action de l’érosion, n’ont pas une origine géologique profonde.
Le profil gravimétrique le plus probable sera donc celui qui “effacera” le mieux de tels mouvements, même si son dessin doit offrir une certaine parenté avec la forme générale du relief.

2.1.7 Anomalie Bouguer

L’anomalie de Bouguer est :

\[
\Delta g_B = \Delta g(\text{observée}) \pm \text{les 5 corrections}
\]

1- Correction de dérive de l’appareil
2- Correction de latitude \(\Delta L = 0.081 \sin 2\varphi \text{ mgal}/100\text{m} \)
3- Correction d’altitude \(\Delta h = 0.3086 \text{ h mgal/m} \)
4- Correction de plateau \(\Delta B = -0.04191 \rho_B h \text{ mgal/m} \)
5- Correction de terrain \(\Delta T \)

où

\[h \text{ est positif si la station est au-dessus du référentiel et négatif en-dessous} \]

et

\[
\Delta g(\text{observée}) = g(\text{observée}) - g_{\text{ref}}
\]

Remarque : Le gravimètre ne donne pas une valeur absolue de \(g\), mais bien une valeur relative.

\[
\Delta g_B = g(\text{observée}) \pm \Delta g - g_{\text{ref}}
\]

Grâce aux corrections, \(g(\text{observée})\) en \(x, y\) et \(z\) a été rendue comparable à \(g_{\text{ref}}\) calculée sur l’ellipsoïde de référence en \((x, y, z) = 0\). On en conclut donc que \(g(\text{observée})\) a été réduite au niveau de l’ellipsoïde.

C’est faux.

En fait il faudrait plutôt écrire :

\[
\Delta g_B = g(\text{observée}) - (g_{\text{ref}} \pm \Delta g)
\]

Au point \((x, y, z)\), on peut faire correspondre un point \((x, y, 0)\) sur l’ellipsoïde où la “pesanteur normale” vaut \(g_{\text{ref}}\). En effet, \(g(\text{observée})\) et \(g_{\text{ref}}\) ne sont pas comparables car \((x, y, z)\) et \((x, y, 0)\)
ne sont pas à la même altitude ni environnés du même relief. On fait donc subir à g_{ref} les corrections nécessaires pour l’emmener dans la position désirée et nous permettre de disposer d’une valeur théorique convenable de g en (x,y,z). L’anomalie de Bouguer est donc attachée au point (x,y,z) et non pas au point $(x,y,0)$ comme on tend à le croire.

2.2 Levé gravimétrique

2.2.1 Numérotage des stations

Suivant le genre de levé, le numérotage des stations pose plus ou moins de difficultés. Dans un levé local, le long de traverses bien définies, les points de mesure portent habituellement le numéro de la traverse et un numéro indiquant son ordre sur celle-ci. On aurait par exemple la station 02 + 09 qui serait la neuvième station sur la traverse deux ou, comme indiqué sur la figure 2.11, la station ”10N-05W” qui serait la station située à 5 unité vers l’ouest par rapport à la station de référence (station 00-00) sur la ligne à 10 unité par rapport à la ligne de référence (ligne 00).

Dans un levé régional (toute la Gaspésie) les points de mesure seraient principalement déterminés par leur longitude et leur latitude. Habituellement, on utilise de plus une numérotation arbitraire pour les stations.

Recommendations :

- La représentativité de la station : Il faut à tout prix éviter l’usage d’un même nom pour deux stations différentes.
- Le nom de la station doit fournir une idée approximative de la position géographique du point considéré. Pour les principaux réseaux, il convient de choisir un seul nom ou numéro pour identifier un réseau en particulier. On aurait, par exemple, 4 pour chemin Lévesque, etc ... Un nom (ou l’initial) d’un lac, d’une rivière, d’une route ou d’une municipalité convient parfaitement. Ainsi par la connaissance du début du nom d’une station, on peut dire la zone géographique où il est le plus probable de la trouver.
2.2. Leve gravimetrique

- La concision : Les noms trop longs doivent être évités ; parce qu’ils sont souvent écrits sous forme abrégée dans les carnets de terrain. On devrait au maximum accepter trois groupes différents de lettres ou de chiffres comportant au maximum deux caractères ; seraient acceptables des noms tels que : S-2, TH-33-A, TL-6-10, BK-7-3, etc ...Les noms : TL-6-24-2, TL-14-13-2, 323-28-2, et autres semblables devraient être rejétés. Le nom des stations pourrait aussi compter un indice de la qualité du levé au point considéré. Ainsi, les points dont l’élévation est mesurée à l’aide d’un baromètre pourraient voir leur nom précédé d’un B, on aurait : BK-5-8, BTH-8-2, etc ...Lorsqu’un réseau secondaire se déploie à partir d’un point donné, ce réseau peut prendre le nom du point de départ. Ainsi, le point BK-5-8 qui a son début au point K-5, etc ...

2.2.2 Nivellement

Le nivellement est extrêmement important en gravimétrie. Comme nous l’avons vu dans la correction d’altitude, une erreur de quelques cm entraîne une erreur importante dans la valeur corrigée de la gravité. Par exemples : 10 cm correspond à 0.02 mgal, 50 cm à 0.1 mgals et 1 m à 0.2 mgals. Ainsi, une erreur de 50 cm dans la mesure des élévations introduit une erreur dans la valeur corrigée de la gravité que de l’ordre des anomalies recherchées (géotechnique, archéologie, minier). Heureusement, le nivellement à l’aide d’un niveau nous donne une précision meilleure que 5 cm soit 0.01mgal, toutefois, cette méthode de mesure requiert beaucoup de personnel (une personne pour la mire et une pour l’instrument) et du temps.

Dans la pratique, avant chaque mesure gravimétrique, il faut déterminer la hauteur relative de la station de mesure par rapport à la station de base. A partir des deux visées obtenues avec le théodolite, la différence de hauteur entre les deux stations est donnée par la différence entre les deux lectures (voir figure 2.12). Attention cependant, la lecture sur la mire nous donne la hauteur relative entre le niveau de la station et la ligne de visée. Ainsi, une ambiguïté peut provenir du fait que plus la valeur lue sur la mire est importante, plus l’altitude absolue du point de mesure est faible. Par exemple, si on obtient des lectures de 1.53 m et 1.75 m pour les stations A et B respectivement, alors le niveau de la station B est dessous celui de la station A.

Sur le terrain, il est très rare de pouvoir faire un levé entier avec une seule position pour le théodolite (terrain accidenté, visée trop lointaine). Il est alors nécessaire de changer la position de l’instrument pour poursuivre les mesures de nivellement. Dans ce cas, il ne faut surtout pas oublier de connecter entre eux les différents segments. Cette opération se réalise en prenant pour une même station deux mesures de niveau : une avant et l’autre après avoir bougé le théodolite (voir figure 2.12). Il sera alors possible de connecter les mesures faites suivant le second segment avec celles du premier. Un exemple est présenté sur la figure 2.12. En considérant la station "Stn 1" comme référence pour notre levé, le niveau de la station "Stn 2" est tout simplement donné par \(\delta h S2/S1 = h[S2/T1] - h[S1/T1] \). Pour la station "Stn 3", il faut faire l’opération en deux étapes. D’abord, calculer le niveau de la station "Stn 3" par rapport à la station "Stn 2" : \(\delta h S3/S2 = h[S3/T2] - h[S2/T2] \), puis ramener cette mesure par rapport à la station "Stn 1" : \(\delta h S3/S1 = \delta h S3/S2 + \delta h S2/S1 \).
2.2. Levé gravimétrique

Figure 2.12:

Après avoir complété le levé et avant de rentrer les instruments, il faut s’assurer d’avoir fait un bon levé du niveau relatif des stations. On dit ici qu’il faut fermer la boucle du nivellement. Pour ce faire, on réalisera un second levé topographique depuis la dernière station du levé jusqu’à la première et ceci en utilisant un nombre réduit de position pour le théodolite (voir figure 2.13). On obtiendra ainsi deux mesures distinctes de la différence de niveau entre la première et la dernière station : l’une à l’allée et la seconde au retour. Un bon levé est bien entendu un levé où les deux mesures sont identiques ($\delta_e = 0$). Néanmoins, il est fréquent d’avoir une différence notable entre ces deux mesures. Il faut alors redistribuer cette erreur sur les N stations de mesures sachant que l’on considère que le chemin retour est juste. Pour ce faire, on corrigerà chaque mesure de niveau de la quantité δ_e/N de manière à obtenir une nouvelle erreur nulle.

Figure 2.13:
Le nivellement au baromètre peut avoir une précision meilleure que 1.5m aux conditions suivantes :

1. Utiliser des **instruments de précision**.
2. Faire usage d’un **baromètre témoin (enregistreur)**.
3. Opérer les instruments seulement dans le cas de **température favorable**.
4. **Revenir** le plus souvent possible au point de base ou à un point dont l’élévation est connue. (Boucle d’une heure au maximum).
5. Procéder au levé en **évitant les longues boucles** (grande distance entre les points).
6. Prendre un **levé précis** de la **température** de l’air en même temps que celui de la pression.

Les causes d’erreur les plus communes dans ce genre de levé sont dues principalement à :

1. Les variations périodiques et non périodiques de la pression atmosphérique.
2. La turbulence de l’air.
3. L’effet du vent.
4. Les variations dans la température de l’air.

Suggestions :

1. Dans tout levé gravimétrique, il faudrait minimiser au maximum l’usage du baromètre.
2. Si le levé couvre un grand territoire, on peut utiliser un GPS de haute résolution ; sinon, faire un levé topo au niveau optique.
3. Dans le cas de levé au niveau, il faudrait faire usage d’un niveau automatique afin de diminuer les temps d’opération.
4. Si le territoire est vaste il serait souhaitable d’avoir deux équipes de niveau sur le terrain.

2.2.3 Résumé pour faire un levé gravimétrique

- **Nivellement** : Ne pas oublier que pour une précision de 0.01 mgal, il faut connaître l’élévation à ± 3 cm pour la correction air libre et à ± 9 cm pour la correction de plateau.
- **Dérive** : il faut repasser à un point de contrôle à toutes les 3-4 heures. Le cheminement employé dépend du terrain sur lequel les mesures sont prises et le temps requis pour faire ces mesures. Le plus important est d’établir un bon réseau de stations de base. Sur une grille traditionnelle d’exploration, on établera les stations de base sur la ligne de base ou sur une des lignes de rattachement (voir figures 2.14, 2.15 et 2.15).
- **Personnel** : Une équipe de gravimétrie devrait être composée au moins de deux personnes : l’opérateur du gravimètre et son aide. Ce dernier pourrait, lorsque les conditions de terrain ne sont pas trop difficiles, faire les calculs nécessaires à l’obtention de la carte de Bouguer.
- **Véhicule** : il devrait avoir les qualités suivantes :
 1. être tout terrain et avec treuil.
 2. être fiable.
3. être ni trop gros, ni trop pesant.
4. Posséder une bonne manœuvrabilité.

2.3 Instrumentation

Il y a deux types de mesures : absolues et relatives.

2.3.1 Mesures absolues

Pendule
La mesure est obtenue à partir de la relation :

\[g = \frac{4\pi^2 I}{T^2 mh} \] \hspace{1cm} (2.23)

où \(I \) est le moment d’inertie, \(T \) la période d’oscillation, \(m \) la masse et \(h \) la distance du pivot au centre de masse du pendule (voir figure 2.17). Cette équation est remplacée par la formule pour le pendule idéal (la connexion entre le pivot et la masse est parfaitement rigide et sans poids) pour devenir :

\[g = \frac{4\pi^2 I}{T^2} \] \hspace{1cm} (2.24)
Cordre vibrante

Le principe de la corde vibrante (voir figure 2.18) est de déterminer la fréquence de résonance entre d’une part la corde soutenant la masse \(m \) et le circuit (solénoïdes) électronique, cette fréquence étant proportionnelle à \(g \).

Chute libre

Suivant le principe de la chute libre (voir figure 2.19), on a :

\[
z = \frac{1}{2}gt^2
\]

et donc, si un corps de vitesse initiale inconnue, tombe de distance \(z_1 \) et \(z_2 \) dans des temps respectifs de \(t_1 \) et \(t_2 \), alors

\[
g = 2 \frac{(z_2 - z_1)}{(t_2 - t_1)^2}
\]

(2.26)
2.3. Instrumentation

Pour une précision de 1mgal sur une chute de 1 à 2 m, le temps doit être connu à 10^{-8} s et la distance à 0.5μm.

![Diagram](image)

Équipement expérimental utilisé pour déterminer l’accélération de la gravité sur un prisme en chute libre.

Figure 2.19:

2.3.2 Mesures relatives

Trois instruments : pendule, balance à torsion et gravimètre.

Pendule

Suivant le principe exposé précédemment, on a $gT^2 = $ cst, et donc que

$$d(gT^2) = 2gT\Delta T + T^2 \Delta g = 0$$

(2.27)

Alors,

$$\Delta g = -2g \frac{\Delta T}{T} = -2g\frac{T_2 - T_1}{T_1}$$

Si la période T peut être mesurée à 1 μs, la précision sur Δg sera de l’ordre de 1 μgal. Dans les années 30, la sensibilité ~ 0.25 μgal temps de mesure environ 30 minutes.

Balance à torsion

La balance de torsion est l’ancêtre du gravimètre. L’appareil est formé par deux masses égales séparées par une barre rigide de longueur $2l$ (horizontale) et une d’une hauteur h (verticale). Le système est suspendue en son centre par une fibre de torsion à laquelle est attachée un petit miroir afin de mesurer la rotation d’un rayon lumineux fourni par une lampe (voir figure 2.20).
A partir des variations du faisceau lumineux lues sur l’écran, mesurera le gradient (variation) horizontal de la gravité. On ne mesure pas g_z car le mouvement n’est que rotationnel et causé par de petites différences dans la composante horizontale de g agissant sur deux masses. Les mesures sont données en Eötvös égales à 10^{-6} mgals/cm.

Les gravimètres

Développés pour mesurer Δg_z sur un terrain (~ 1930), le système correspond essentiellement à une balance extrêmement sensible dans laquelle une masse est reliée à un ressort. Les variations de la gravité se traduisent alors par une élongation du ressort amplifiée mécaniquement ou électriquement. Les gravimètres modernes utilisent deux ressorts : un dont la tension correspond à une valeur moyenne pour la région et un autre plus sensible relié à une vis micrométrique qui sert à faire la lecture.

On retrouve deux types de gravimètres : les gravimètres stables et les instables.

Les Gravimètre stables Ces gravimètres sont établis suivant le principe de la loi de Hooke (voir figure 2.21) :

$$\Delta g = \frac{k}{m} \Delta x \tag{2.29}$$

où k est la constante du ressort, m la masse et Δx l’élongation du ressort. Si le ressort à une période d’oscillation, nous obtenons

$$g = \frac{4\pi^2}{T^2} \Delta x \tag{2.30}$$

où T est la période d’oscillation donnée par :

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{2.31}$$

Pour détecter Δg de 0.1μgal, Δx doit être de l’ordre de 10^{-7} cm.
Un exemple, le Gravimètre Gulf :
- Il mesure la rotation d’un ressort construit à partir d’un ruban métallique plat en s’étirant, il engendre un mouvement relatif transmis à un miroir qui lui est fixé, la déflexion du rayon lumineux est amplifiée puis lue ;
- sensibilité > 0,1μgal ;
- initialement 100 lbs, réduit à 25.

Les Gravimètre astables Les Gravimètre astables sont plus précis que les gravimètres stables.
- La Coste - Romberg : développé en 1934 par J.B. LaCoste, il est basé sur le principe du ressort de longueur zéro : la tension ∝ longueur du ressort (voir figures 2.22 et 2.23). Son degré de précision est de ±0.01 mgals, voire mieux. Ils sont fabriqués en métal avec faible extension thermique et sont isolés et thermostatés ±0.002° C. Les premiers pesaient environ 80 lbs (1940), maintenant, seulement 6 lbs.
Worden : développé en 1948, il possède un mécanisme en quartz (très léger, le mécanisme est gros comme un poing). Sa sensibilité aux ΔT et ΔP est réduite parce que le mécanisme est sous vide. Il possède également un système de compensation thermique. Le mouvement est similaire au LaCoste - Romberg (voir figures 2.24). Ses caractéristiques techniques sont : $\sim 10''$ de haut, $5''$ de diamètre, et environ 6 lbs. Le prospecteur de Sodin a une précision de $\sim 10 \mu gals$; Coût $\sim 29,000$ Can $\$$(1998).
2.3. Instrumentation

Figure 2.24:

- Scintrex CG-3 : gravimètre “électronique” : les mesures sont automatiques et multiples (nivellement automatique, correction de marées, interface avec ordinateur) Sensibilité $\sim 1\mu gal$; Précision $\sim 3\mu gals$; Coût $\sim 45,000$ Can $\$ (1998). Version autonivellante héliportée pour les régions d’accès difficiles : l’Héligrav de Scintrex.

Figure 2.25:
2.4 Traitements

2.4.1 Séparation régionale - résiduelle

L’anomalie de Bouguer peut provenir de plusieurs niveaux :

1. grande profondeur : ex. : variations du socle métamorphique ;
2. profondeur moyenne : ex. : lentille de sel à l’intérieur d’une colonne sédimentaire ;

Plus la source est profonde, plus l’anomalie est évasée (voir figure 2.26).

Figure 2.26:

Une fois toutes les corrections appliquées, on obtient une carte de l’anomalie de Bouguer qui démontre en général deux caractéristiques (l’anomalie de Bouguer représente la somme de tous les corps sous la surface) :

1. Des variations du champ gravitationnel régulières et continues sur de grande distance appelées variations régionales. Elles sont produites par les hétérogénéités à grandes profondeurs. Composante qui varie lentement en \((x, y) \).
2. Superposées à ces variations régionales, et souvent masquées par celles-ci, on observe de petites perturbations locales du champ gravitationnel qui sont secondaires en dimensions mais primordiales.

Selon le but du levé, il faut :

1. Lisser et enlever les effets de surface pour ne retenir que les effets de profondeur (régionale).
2. Lisser les effets de sources profondes et les soustraire pour obtenir les anomalies de surface (résiduelle).

Les anomalies dites résiduelles, sont surtout produites par des hétérogénéités situées dans la partie supérieure de l’écorce terrestre. Ce sont souvent le résultat de minéralisation ou de réservoirs. Afin de pouvoir observer ces anomalies, il est nécessaire de soustraire l’anomalie régionale de nos données. Pour séparer la régionale et la résiduelle, on peut soit :
- faire une lissage graphique sur le profil ;
- faire un lissage graphique sur les lignes de contours ;
- calculer la régionale analytiquement ou appliquer un filtre (généralement par ordinateur) ;
- calculer l’effet de la source à éliminer si sa géométrie et sa densité sont connues afin de le soustraire à l’anomalie Bouguer (modélisation).
2.4.2 Prolongement vers le haut

Considérons les deux demi espace de la figure 2.27, on a :

\[\nabla^2 U_Q = -4\pi G \rho \]
\[U_P = G \int_{V} \frac{\rho}{R} dv \] (2.32) (2.33)

qui devient, en utilisant le théorème de Green :

\[U_P = \frac{1}{2\pi} \int_{x} \int_{y} \left(\frac{g}{R_s} \right) dxdy \] (2.35)

où \(R_s \) est donné par :

\[R_s^2 = (x - x_0)^2 + (y - y_0)^2 + h^2 \] (2.36)

Finalement,

\[g_P = \frac{\partial U_P}{\partial z} = \frac{h}{2\pi} \int_{x} \int_{y} \left(\frac{g}{R_s^3} \right) dxdy \] (2.37)

2.4.3 Exemples de superposition d’une anomalie avec une régional

La sphère

Sur la figure 2.28, on a superposé sur la moitié inférieure l’effet d’une régionale avec gradient positif vers l’ouest de 0.3 \(\mu gal/100m \). La régionale a une valeur de 0.2 \(\mu gals \) à 475 m au nord du centre de la sphère.
2.4. Traitements

Figure 2.28: Contours aux 0.2 \(\mu gals \) Rayon de la sphère 100 m; Profonduer au centre de la sphère 85 m

Cylindre horizontal

Sur la figure 2.29, on a superposé sur la moitié inférieure l’effet d’une régionale avec gradient positif vers l’ouest de 0.3 \(\mu gal/100m \). La régionale a une valeur de 0.2\(\mu gals \) à 1000 m à l’ouest du centre du cylindre.

Figure 2.29: Contours aux 0.2 \(\mu gals \) Rayon de cylindre 100 m; Profonduer au centre du cylindre 105 m

Faille verticale

Sur la figure 2.30, on a superposé sur la partie supérieure une régionale de gradient 0.3\(\mu gal/100m \) vers l’est et dans la partie inférieure, une régionale de gradient 0.3\(\mu gal/100m \) vers l’ouest.
2.4. Traitements

Figure 2.30: Contours aux 0.2 \(\mu \)gals Déplacement vertical de la faille 90 m

Autres exemples

Figure 2.31 La régionale est estimée par une droite de pente négative. La résiduelle est calculée par simple différence entre les valeurs mesurée (corrigées) et cette droite.

Figure 2.32 La régionale est estimée par un plan (cas 2D) déterminer par le prolongement de chacunes des lignes de contours depuis les bordures vers le centre de la carte.
2.4. Traitements

Figure 2.32:

Figure 2.33 Différentes courbes sont calculées en calculant des moyennes sur 5 ou 11 points. Noter ici que plus on prend un nombre important de points, plus on a tendance à éliminer les petites variations pour obtenir presque une droite (cas 11 pts).

Figure 2.33:

2.4.4 Cône de sources

Sur la figure 2.34, la sphère (1) est le corps le plus profond qui peut produire approximative-ment l’anomalie graviétrique présentée. Des corps plus superficiels et plus larges, tels que (2) et (3), pourraient aussi produire des anomalies semblables. Tous auraient la même anomalie de masse totale.
Figure 2.34:
Chapitre 3

Interprétation

3.1 Modèle simple

3.1.1 La sphère

L’anomalie d’une sphère peut s’écrire sous la forme (voir figure 3.1) :

\[g_r = \frac{Gm}{r^2} \quad \text{où} \quad M = \frac{4}{3} \pi a^3 \times \rho \quad (3.1) \]

La composante verticale s’exprime donc par :

\[g_z = g_r \cos \theta = g_r \frac{z}{r} = \frac{4}{3} \pi a^3 G \rho \frac{z}{(x^2 + z^2)^{3/2}} \quad (3.2) \]
Si il existe un contraste de densité entre la sphère et le matériau encaissant, $\Delta \rho = \rho_1 - \rho_2$, alors l’anomalie gravimétrique de la sphère est :

$$\Delta g_z = \frac{4}{3 \pi a^3} G \Delta \rho \frac{z}{(x^2 + z^2)^{3/2}}$$ (3.3)

L’anomalie maximale se trouve à $x = 0$ et est égale à

$$\Delta g_{\text{max}} = \frac{4}{3} \pi a^3 G \frac{\Delta \rho}{z^2}$$ (3.4)

Examinons maintenant l’endroit particulier de la courbe où $\Delta g = \Delta g_{\text{max}}/2$ (voir figure 3.1) définissant le point $x = x_{1/2}$ ($x_{1/2}$ est appelé la “demi-largeur” à la “demi-hauteur”). On a, en posant $V = \frac{4}{3} \pi a^3$,

$$\Delta g = \frac{\Delta g_{\text{max}}}{2}$$

$$VG\Delta \rho \frac{z}{(x_{1/2}^2 + z^2)^{3/2}} = \frac{1}{2} VG\Delta \rho \frac{1}{z^2}$$

$$\frac{z}{(x_{1/2}^2 + z^2)^{1/2}} = 2$$

$$\frac{1}{1 + \left(\frac{x_{1/2}}{z}\right)^2} = \frac{1}{2}$$

$$\frac{1 + \left(\frac{x_{1/2}}{z}\right)^{3/2}}{1 + \left(\frac{x_{1/2}}{z}\right)^2} = 4$$

$$z = 1.306 \times x_{1/2}$$ (3.5)

Il est donc possible de connaître la profondeur z du centre de la sphère à partir de l’anomalie gravimétrique qu’elle produit. Lorsque z est connu, on peut alors calculer l’excès de masse de la sphère (ΔM)

$$\Delta M = \frac{\Delta g_{\text{max}} \cdot z^2}{G}$$ (3.6)

et, si les densités de milieu encaissant et de la sphère sont connus, la masse réelle de la sphère (M) (règle de trois) :

$$M = \Delta M \frac{\rho_{\text{sphère}}}{\Delta \rho}$$ (3.7)

où $\Delta \rho = \rho_{\text{sphère}} - \rho_{\text{encaissant}}$
3.1.2 Le cylindre horizontal

L’anomalie gravimétrique d’un cylindre de longueur L, dont la profondeur du centre est z et dont le contraste de densité est $\Delta \rho = \rho_1 - \rho_2$, est donné par (voir figure 3.2) :

$$\Delta g_z = \frac{G\pi R^2 \Delta \rho}{z(1 + (x/z)^2)} \left[\frac{1}{1 + \left(\frac{x^2 + z^2}{(y-L)^2} \right)^{1/2}} - \frac{1}{1 + \left(\frac{x^2 + z^2}{(y+L)^2} \right)^{1/2}} \right]$$ (3.8)

![Figure 3.2: Cylindre horizontal](image)

Si le cylindre est infiniment long ($L > 10z$), alors l’équation se simplifie pour donner :

$$\Delta g_z = \frac{2G\pi R^2 \Delta \rho}{z(1 + (x/z)^2)}$$ (3.9)

avec un maximum en $x = 0$ donné par :

$$\Delta g_{\text{max}} = \frac{2G\pi R^2 \Delta \rho}{z}$$ (3.10)

En utilisant ces derniers résultats et, de la même manière que pour la sphère, on a, au point $x = x_{1/2}$, en posant $C = 2\pi GR^2$:

$$\Delta g = \frac{\Delta g_{\text{max}}}{2}$$

$$\frac{C \Delta \rho}{z(1 + (x_{1/2}/z)^2)} = \frac{1}{2z}$$

$$\frac{1}{1 + \left[\frac{x_{1/2}}{z} \right]^2} = \frac{1}{2}$$

$$\frac{1}{1 + \left(\frac{x_{1/2}}{z} \right)^2} = 2$$
3.1. Modele simple

\[
\begin{align*}
 z &= x_{1/2} \\
 \text{(3.11)}
\end{align*}
\]

La profondeur du cylindre est trouvée directement par la valeur de \(x_{1/2}\). De plus, le cylindre donne une anomalie plus large que celle d’une sphère (voir figure 3.3).

\[
\text{Figure 3.3:}
\]

3.1.3 Le cylindre vertical

Dans le cas du cylindre vertical, on doit intégrer un petit élément \(dg_z\) donné par :

\[
dg_z = 2\pi G \rho dl \sin \phi d\phi
\]

(3.12)

pour \(\phi\) allant de 0 à \(\arctan(R/l)\) et puis pour \(dl\) variant de \(z\) à \(z+l\). Finalement, après quelques calculs, la valeur maximum de l’anomalie \(\Delta g_{\max}\) est donnée par :

\[
\Delta g_{\max} = 2\pi G \Delta \rho \left[L + \left(z^2 + R^2 \right)^{1/2} - \left((z+L)^2 + R^2 \right)^{1/2} \right]
\]

(3.13)

à noter ici que la correction de terrain fait par le réticule est donnée par intégration sur une partie du cylindre :

\[
\Delta g_t = G \rho \theta \left[(r_2 - r_1) + \left(r_1^2 + L^2 \right)^{1/2} - \left(r_2^2 + L^2 \right)^{1/2} \right]
\]

(3.14)

3.1.4 Le feuillet vertical

Pour un feuillet vertical (voir figure 3.4), l’anomalie est donné par :

\[
\Delta g_z = 2Gt \Delta \rho \ln \left[\frac{(h+l)^2 + x^2}{x^2 + h^2} \right]
\]

(3.15)
Si $h \sim l$, le maximum est donné par :

$$\Delta g_{\text{max}} = 2Gt\Delta \rho \ln(4) \quad (3.16)$$

et en $x = x_{1/2}$ ($\Delta g_z = \Delta g_{\text{max}}/2$)

$$2Gt\Delta \rho \ln \left[\frac{(2h)^2 + x_{1/2}^2}{x_{1/2}^2 + h^2} \right] = \frac{1}{2}Gt\Delta \rho \ln(4)$$

$$\frac{4h^2 + x_{1/2}^2}{x_{1/2}^2 + h^2} = 2$$

$$h^2 = \frac{x_{1/2}^2}{z}$$

$$h = 0.7x_{1/2} \quad (3.17)$$

3.1.5 La plaque mince horizontale infinie

L’anomalie pour la plaque mince horizontale infinie (voir figure 3.5) est :

$$\Delta g_z = 2Gt\Delta \rho \left[\frac{\pi}{2} + \arctan \left(\frac{x}{h} \right) \right] \quad (3.18)$$

où h est la profondeur au plan médian de la faille et non pas la profondeur au toit.
3.1. Modèle simple

Certains paramètres de la plaque mince peuvent être trouvés à partir de l’anomalie qu’elle produit. Ainsi, lorsque :

\[x \to -\infty \quad \Delta g \to 0 \]
\[x \to +\infty \quad \Delta g \to 2\pi G t \Delta \rho \]

e et donc, l’anomalie maximum \(\Delta g_{\text{max}} \) est égale à

\[\Delta g_{\text{max}} = |\Delta g_{+\infty} - \Delta g_{-\infty}| = 2\pi G t \Delta \rho \] (3.19)

Ceci permet de déterminer un premier paramètre caractérisant la plaque, c’est à dire \(t \Delta \rho \) :

\[t \Delta \rho = \frac{\Delta g_{\text{max}}}{2\pi G} \] (3.20)

De plus, la dérivée (i.e. la pente au point d’inflexion de la courbe) en \(x = 0 \) nous donne :

\[\left. \frac{\partial g}{\partial x} \right|_{x=0} = 2\pi G t \Delta \rho \frac{h}{h^2 + x^2} \bigg|_{x=0} = \frac{\Delta g_{\text{max}}}{\pi h} \] (3.21)

qui nous donne donc le second paramètre pour la plaque, \(h \) :

\[h = \frac{\Delta g_{\text{max}}}{\pi \left. \frac{\partial g}{\partial x} \right|_{0}} \] (3.22)

Si la plaque a une longueur finie \(L \), alors

\[\Delta g_z = 2Gt \Delta \rho \left[\arctan \left(\frac{L - x}{h} \right) - \arctan \left(\frac{x}{h} \right) \right] \] (3.23)

3.1.6 Le prisme rectangulaire

L’anomalie pour le prisme rectangulaire (voir la figure 3.6 pour les différents paramètres) est donné par :

\[\Delta g_z = 2G \Delta \rho \left[z_2 \theta_2 - z_1 \theta_1 + x \ln \frac{r_1 r_4}{r_2 r_3} + b \ln \frac{r_4}{r_3} \right] \] (3.24)
3.2. Modèle complexe

Si \(b \to \infty \), alors \(\theta_1 \to \varphi_1, \theta_2 \to \varphi_2 \) et \(r_3 \to r_4 \). L’équation devient :

\[
\Delta g_z = 2G\Delta \rho \left[z_2\varphi_2 - z_1\varphi_1 + x \ln \frac{r_1}{r_2} \right]
\]
\((3.25) \)

Figure 3.6:

Pour un contact \((z_1 = 0, b \to \infty) \), alors :

\[
\Delta g_z = 2G\Delta \rho \left[\frac{x}{t} \ln \left(\frac{1 + x^2/t^2}{x/t} \right) + \frac{\pi}{2} + \arctan \left(\frac{x}{t} \right) \right]
\]
\((3.26) \)

3.2 Modèle complexe

Lorsque les corps étudiés ne peuvent raisonnablement être approximés par les formes simples dont on connaît analytiquement les réponses, il est nécessaire de recourir à d’autres outils. Pour calculer l’anomalie, il existe les méthodes graphiques et les méthodes analytiques.

3.2.1 Les méthodes graphiques

On utilise des graticules pour calculer l’effet des corps. Un graticule est une série de cellules de différentes formes et grosseur, chacune couvrant une surface correspondant à une contribution connue (et généralement uniforme) à la valeur de \(g_z \) au point de mesure en surface. Il y a deux types.

Premier type : Les compartiments trapézoïdaux (voir figure 3.7) sont formés par des lignées horizontales équidistantes coupant une série de lignes radiales séparées d’un même angle. L’effet des cellules est

\[
g_z = 2G\rho(\theta_2 - \theta_1)(z_2 - z_1)
\]
\((3.27) \)
3.2. Modèle complexe

Puisqu’en général : $\theta_2 - \theta_1 = \text{cst}$ et $z_2 - z_1 = \text{cst}$, l’effet de chacune des cellules est la même.

Figure 3.7:

Deuxième type : "Dots charts" Les compartiments (voir figure 3.8) sont formés par la rencontre de lignes radiales et d’arcs de cercle. Leur contribution n’est pas uniforme mais est dépendante du nombre de points qu’ils contiennent. Chacun des points représente une contribution constante à g_z au point de mesure.

Pour calculer l’effet gravimétrique d’un corps enfouis, le "Dot chart", imprimé sur un transparent, est superposé sur une section transversale, le vertex est placé sur la position de la surface où l’effet gravimétrique est désiré.

Figure 3.8:

Remarques : Si les structures ne sont pas réellement 2-D, on peut appliquer des corrections pour les effets de bordure. Dans le cas des structures 3-D, la méthode graphique s’applique aussi. Les corps sont divisés en une série de plaques horizontales dont les effets sont calculés à l’aide de graticules. Cette approche est compliquée puisqu’on doit introduire un facteur d’échelle pour tenir compte de la profondeur de chacune des plaques. On voit donc que cette méthode s’applique bien mieux à l’aide d’un ordinateur (proposé par Hubbert en 1948, repris par Talwani sur ordinateur en 1959 (2D) et en 1960 (3D)).
3.2.2 Méthode analytique

On peut montrer que g produit par un corps 2D de section quelconque est égale à une intégrale de ligne autour de cette section

$$g = 2G\Delta\rho \int zd\theta$$

(3.28)

Figure 3.9:

Si la section est approximée par un polygone de n côtés (voir figure 3.9)

$$\int zd\theta = \sum_{i=1}^{n} Z_i$$

(3.29)

où Z_i est l’intégrale de ligne pour le côté donné par :

$$Z_i = a_i \sin \theta_i \cos \theta_i \left[(\theta_i - \theta_{i+1}) + \tan \theta_i \times \left(\frac{\cos \theta_i (\tan \theta_i - \tan \phi_i)}{\cos \theta_{i+1} (\tan \theta_{i+1} - \tan \phi_{i+1})} \right) \right]$$

(3.30)

où

$$\theta_i = \arctan \left(\frac{z_i}{x_i} \right)$$

$$\phi_i = \arctan \left(\frac{z_{i+1} - Z_i}{x_{i+1} - x_i} \right)$$

$$a_i = x_{i+1} - z_{i+1} \cot \phi_i$$

$$= x_{i+1} - z_{i+1} \left(\frac{x_{i+1} - x_i}{z_{i+1} - z_i} \right)$$
3.2.3 Gravité 3-D

\[
\Delta g(O) = G\Delta \rho \int z dz \int_S \frac{rdrd\theta}{(r^2 + z^2)^{3/2}} \\
= G\Delta \rho \sum_{j=1}^{m} W_j z_j \int_{S_j} \frac{rdrd\theta}{(r^2 + z_j^2)^{3/2}} \quad (3.31)
\]

Figure 3.10:

Figure 3.11:
3.3 Excès de masse

3.3.1 Calcul de l’excès de masse

Supposons une masse M causant un champ gravitationnel \vec{g} (voir figure 3.12)

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3_12.png}
\caption{Figure 3.12:}
\end{figure}

Entourons la d’une demi-sphère et appliquons le théorème de Gauss :

$$\int_V (\nabla \cdot \vec{g}) dv = \int_S \vec{g} \cdot \vec{n} ds$$ \hspace{1cm} (3.32)

Or, $\vec{g} = -\nabla U$. D’où :

$$- \int_V \nabla^2 U dv = \int_S \vec{g} \cdot \vec{n} ds$$ \hspace{1cm} (3.33)

ou encore, en utilisant la formule de Poisson : $\nabla^2 U = 4\pi G \rho$, où ρ est la densité de la masse (ρ étant égal à zéro partout ailleurs) :

$$4\pi G \int_V \rho dv = 4\pi GM = - \int_S \vec{g} \cdot \vec{n} ds$$ \hspace{1cm} (3.34)

où M est la masse du corps causant l’anomalie. Le flux de la force d’attraction à travers toute surface fermée située dans un champ gravitationnel est égal à $4\pi G$ fois la masse située à l’intérieur de la surface. Notons que ceci est valide pour toute forme de surface et toute distribution de masse (volume, position, forme). On peut donc calculer la masse produisant une anomalie gravimétrique à partir du levé sans connaître la forme ou la profondeur de la masse. Dans le cas d’un levé gravimétrique, on connaît Δg_z et on peut supposer que la surface de mesure était plane, ce qui correspond à la surface $z = 0$ de la demi-sphère.

Sur le plan $z = 0$, on a (le signe (-) intervient parce que \vec{n} pointe vers l’extérieur de la surface) :

$$\Delta \vec{g} \cdot \vec{n} = - \Delta g_z$$ \hspace{1cm} (3.35)

Pour la surface $r = R$ de la demi-sphère, on aura, en coordonnées sphériques :

$$\Delta \vec{g} \cdot \vec{n} = - \vec{\nabla} U \cdot \vec{r} = - \frac{\partial U}{\partial r}$$ \hspace{1cm} (3.36)
et donc :

$$4\pi G \Delta M = - \int_s \Delta \vec{g} \cdot \vec{n} ds = \int_{S_1} \Delta g_z ds + \int_{S_2} \frac{\partial U}{\partial r} ds$$ (3.37)

Si $R \to \infty$, on aura

$$4\pi G \Delta M = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Delta g_z dxdy + \lim_{R \to \infty} \int_{\theta=\pi/2}^{\pi} \int_{0}^{2\pi} \frac{\partial U}{\partial r} R^2 \sin \theta d\theta d\varphi$$ (3.38)

Pour R très grand, le potentiel n’est plus vu que comme celui d’une masse ponctuelle M à l’origine, ce qui induit :

$$U_{R \to \infty} = \frac{G \Delta M}{R}$$ (3.39)

Alors

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Delta g_z dxdy = 4\pi G \Delta M - 2\pi \lim_{R \to \infty} \int_{\pi/2}^{\pi} \frac{G \Delta M}{R^2} \sin \theta d\theta$$

$$= 4\pi G \Delta M - 2\pi G \Delta M$$

$$= 2\pi G \Delta M$$ (3.40)

Soit :

$$\Delta M = \frac{1}{2\pi G} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Delta g_z dxdy$$ (3.41)

Puisque nous travaillons avec Δg_z, ΔM est l’excès de masse du corps causant l’anomalie et non pas sa masse réelle. Pour connaître la masse réelle du corps, il faut utiliser un facteur correctif

$$M = \Delta M \frac{\rho_M}{\rho_M - \rho_E}$$ (3.42)

où ρ_M est la densité de la masse et ρ_E est la densité du milieu encaissant.

3.3.2 Unicité de la solution

Nous savons que des corps de forme, volume et positions spatiales différentes peuvent donner des anomalies gravimétriques identiques. On peut donc se demander si la détermination de la masse causant l’anomalie est unique.

Supposons deux masses M_1 et M_2, produisant des anomalies Δg_{z1} et Δg_{z2} partout égales sur le plan de référence. On aura donc :

$$\int \int \Delta g_{z1} ds = 2\pi G \Delta M_1$$

$$\int \int \Delta g_{z2} ds = 2\pi G \Delta M_2$$ (3.43)

qui est indépendant de la géométrie (forme, volume, position spatiale) des masses puisque par hypothèse $\Delta g_{z1} = \Delta g_{z2}$. Les deux intégrales sont donc identiques et M_1 doit égal M_2. La solution est donc unique.
3.3.3 Considérations pratiques

Dans le cas d'intégration numérique, l'équation devient

\[T_{\text{min}} = 23.9 \times \left[\frac{\rho_M}{\rho_M - \rho_E} \right] \sum S \Delta g \Delta s \]

(3.44)

où \(T_{\text{min}} \) est le tonnage minimum, en tonnes métriques \(\rho_M \) la densité de la masse (g/cm\(^3\)), \(\rho_E \) la densité de la roche encaissante (g/cm\(^3\)), \(\Delta g \) l'intensité de l'anomalie (mgal), \(S \) la surface (m\(^2\)) où l’anomalie a la valeur \(\Delta g \) et \(\sum \) la sommation sur la superficie \(S \) du produit \(\Delta g \Delta s \).

Puisqu’en général la surface d’intégration \(S \) est finie, on doit appliquer un facteur correctif dépendant de la géométrie de l’anomalie :

1. Si l’anomalie est ± circulaire

\[T = T_{\text{min}} \times \left(\frac{1}{1 - h/R} \right) \]

(3.45)

où \(T \) est le tonnage total, \(R \) le rayon de la superficie circulaire sur laquelle la sommation est faite et \(h \) la profondeur du centre de gravité de la masse. Si \(S \) n’est pas parfaitement circulaire, on prendra le rayon moyen \(R = \sqrt{S/\pi} \).

2. Si l’anomalie est rectangulaire

\[T = T_{\text{min}} \times \left[\frac{\pi/2}{\arctan \left(\frac{\frac{x}{y}}{h/\sqrt{x^2+y^2}} \right)} \right] \]

(3.46)

où \(2x2y \) est la superficie rectangulaire de sommation \((x > y)\) et \(h \) la profondeur du centre de gravité de la masse.

3. Si \(S \) n’est pas parfaitement rectangulaire et qu’il est difficile d’obtenir des valeurs précises de \(x \) et \(y \), il est préférable de trouver le rapport approximatif \(x/y \) et d’utiliser

\[T = T_{\text{min}} \times \left[\frac{\pi/2}{\arctan \left(\frac{\frac{S(x/y)}{1+(x/y)^2}}{2h} \right)} \right] \]

(3.47)

Détermination approximative de \(h \) :

1. Si l’anomalie est circulaire en plan et relativement aiguë, \(h = 1.3x_{1/2} \), où \(x_{1/2} \) est la demi-largeur à la demi-hauteur.

2. Si l’anomalie est au moins cinq fois plus longue que large en plan et relativement aiguë, \(h = x/1.2 \).

3. Pour les longueurs intermédiaires, choisir un coefficient entre 1 et 1.3.

4. Si l’anomalie présente un maximum très plat, la valeur de \(h \) peut être beaucoup trop grande et \(T \) sera une valeur maximum.
3.3.4 Exemple de calcul de tonnage

• G1

Paramètres pour G1 (figure 3.13)
- Échelles : 1 pouce carré = 14 900 m²
- Intensités = milligals
- Minerai : densité $\rho_1 = 2.92 \, g/cm^3$
- Roche encaissante : densité $\rho_2 = 2.8 \, g/cm^3$
3.3. Exces de masse

Paramètres pour G2 (figure 3.14)
- Echelles : 1 pouce carré = 14 900 m²
- Intensités = milligals
3.3. Exces de masse

- Mineraï : densité $\rho_1 = 4.00 \ g/cm^3$
- Roche encaissante : densité $\rho_2 = 2.8 \ g/cm^3$

![Diagram showing parameters for G3](image)

Figure 3.14:

- **G3**

Paramètres pour G3 (figure 3.15)
- Échelles : 1 pouce carré = 21 850 m^2
- Intensités = milligals
- Mineraï : densité $\rho_1 = 4.35 \ g/cm^3$
- Roche encaissante : densité $\rho_2 = 2.7 \ g/cm^3$
3.3.5 Exemple de calcul avec G-2 Marmora

Données :
- 1 po = 1 000 pi ; 1 po2 = 92 903 m^2
3.3. Excès de masse

- 1 careau = 1/400 po
- \(\rho_1 = 4.00 \text{ g/cm}^3 ; \rho_2 = 2.80 \text{ g/cm}^3 \)

Mesures des surfaces : on compte les carreaux !

- Contours 8.0-10.0 milligals : 28 carreaux

<table>
<thead>
<tr>
<th>ligne</th>
<th>Nb de carr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- Contours 6.0-8.0 milligals : 88 carreaux

<table>
<thead>
<tr>
<th>ligne</th>
<th>Nb de carr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

- Contours 4.0-6.0 milligals : 118 carreaux

<table>
<thead>
<tr>
<th>ligne</th>
<th>Nb de carr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

- Contours 2.0-4.0 milligals : 246 carreaux
3.3. Excès de masse

<table>
<thead>
<tr>
<th>ligne</th>
<th>Nb de carr.</th>
<th>ligne</th>
<th>Nb de carr.</th>
<th>ligne</th>
<th>Nb de carr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>12</td>
<td>2</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>14</td>
<td>24</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>18</td>
<td>4</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>19</td>
<td>15</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>20</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Contours 0.0-2.0 milligals : 262 carreaux

<table>
<thead>
<tr>
<th>ligne</th>
<th>Nb de carr.</th>
<th>ligne</th>
<th>Nb de carr.</th>
<th>ligne</th>
<th>Nb de carr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>07</td>
<td>13</td>
<td>12</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>02</td>
<td>05</td>
<td>14</td>
<td>20</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>03</td>
<td>06</td>
<td>15</td>
<td>1</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>04</td>
<td>06</td>
<td>16</td>
<td>13</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>05</td>
<td>06</td>
<td>17</td>
<td>19</td>
<td>28</td>
<td>8</td>
</tr>
<tr>
<td>06</td>
<td>05</td>
<td>18</td>
<td>3</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>07</td>
<td>06</td>
<td>19</td>
<td>13</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>08</td>
<td>07</td>
<td>20</td>
<td>21</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>09</td>
<td>06</td>
<td>21</td>
<td>2</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>02</td>
<td>22</td>
<td>9</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>09</td>
<td>23</td>
<td>8</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calcul de T_{min}

<table>
<thead>
<tr>
<th>Contours (mgals)</th>
<th>Δg (mgals)</th>
<th>Nb div.</th>
<th>ΔS po2</th>
<th>ΔS m2</th>
<th>$\Delta g \times \Delta S$ (mgals m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0-10.</td>
<td>9.0</td>
<td>28</td>
<td>0.0700</td>
<td>6,503</td>
<td>58,527</td>
</tr>
<tr>
<td>6.0-8.0</td>
<td>7.0</td>
<td>88</td>
<td>0.2000</td>
<td>20,439</td>
<td>143,073</td>
</tr>
<tr>
<td>4.0-6.0</td>
<td>5.0</td>
<td>118</td>
<td>0.2950</td>
<td>27,406</td>
<td>137,030</td>
</tr>
<tr>
<td>2.0-4.0</td>
<td>3.0</td>
<td>146</td>
<td>0.6150</td>
<td>59,135</td>
<td>171,405</td>
</tr>
<tr>
<td>0.0-2.0</td>
<td>1.0</td>
<td>262</td>
<td>0.6550</td>
<td>60,852</td>
<td>60,852</td>
</tr>
<tr>
<td>TOTAL</td>
<td>742</td>
<td>1,8550</td>
<td>172,335</td>
<td>570,887</td>
<td></td>
</tr>
</tbody>
</table>

$$T_{\text{min}} = 23.9 \left[\frac{\rho_1}{\rho_1 - \rho_2} \right] \sum_s \Delta g \times \Delta s$$

$$= 23.9 \left[\frac{4.00}{4.00 - 2.80} \right] 570,880 \approx 45.5 \times 10^6$$ \hspace{2cm} (3.48)
3.3. Excès de masse

Calcul de T

Par la meilleure formule pour G-2

$$T = T_{min} \times \left[\frac{\pi/2}{\arctan \left(\frac{1}{2\pi} \sqrt{\frac{S(x/y)}{1+(x/y)^2}} \right)} \right]$$ \hspace{1cm} (3.49)

1. Calcul de x, y (voir figure 3.16). On obtient :

 $$2x \approx 2.40 \text{ po} \quad 2y \approx 0.75 \text{ po}$$

 $$(x/y) = 3.20 \quad 2x \times 2y = 1.80 \text{ po}^2 \approx S = 1.855 \text{ po}^2$$ \hspace{1cm} (3.50)

![Figure 3.16:](image)

2. Calcul de h (voir figure 3.17) : On a :

 $$2x_{1/2} = 3.40 \text{ po} \quad x_{1/2} = h = 1.7 \text{ po}$$

![Figure 3.17:](image)
Nous avons alors
\[\frac{1}{2h} \sqrt{\frac{S(xy)}{1 + (xy)^2}} = \frac{1}{0.34} \sqrt{1.855 \times 3.20 \over 1 + (3.20)^2} = 2.137 \] (3.51)
Ainsi
\[T = T_{\text{min}} \times \frac{\pi/2}{\arctan(2.137)} \]
\[= 63.1 \times 10^6 \text{ tonnes métriques} \] (3.52)

Par l’autre formule pour \(S \) rectangulaire
\[T = T_{\text{min}} \times \left[\frac{\pi/2}{\arctan \left(\frac{xy}{h \sqrt{x^2 + y^2}} \right)} \right] \] (3.53)
avec
\[\frac{1}{h} \frac{xy}{\sqrt{x^2 + y^2}} = \frac{1}{0.17} \frac{1.2 \times 0.375}{\sqrt{1.2^2 + 0.375^2}} = 2.105 \] (3.54)
Ainsi
\[T = T_{\text{min}} \times \frac{\pi/2}{\arctan(2.105)} \]
\[= 63.4 \times 10^6 \text{ tonnes métriques} \] (3.55)
Ce résultat n’est pas tellement différent du précédent. Ceci provient du fait que \(2x \times 2y \approx S \).

Par la formule pour \(S \) circulaire
\[T = T_{\text{min}} \times \left(\frac{1}{1 - h/R} \right) \] (3.56)
Comme l’anomalie n’est pas vraiment circulaire, il faut prendre, pour calculer \(T \), la valeur de \(R \) donné par :
\[R = \sqrt{\frac{S}{\pi}} = \sqrt{\frac{1.855}{\pi}} = 0.7684 \] (3.57)
Ainsi
\[T = T_{\text{min}} \times \left[\frac{1}{1 - 0.17 \over 0.7684} \right] \]
\[= 58.4 \times 10^6 \text{ tonnes métriques} \] (3.58)
Ce dernier résultat est assez différent des deux précédent, mais beaucoup mieux que \(T_{\text{min}} \). Dans ce cas, il faut accepter \(T_M = 63.1 \times 10^6 \text{ tonnes métrique} \).
Chapitre 4

Signature des structures géologiques en gravimétrie

4.1 Levés régionaux et tectoniques

4.1.1 Étude structurale à grande échelle

Canada : Fig.4.1

Figure 4.1: Carte d’anomalie gravimétrique du Canada. L’intervalle des lignes de contour est de 20 ; l’intervalle des lignes de contour de couleurs est de 40 mgal.
4.1. Levés régionaux et tectoniques

États-Unis d’Amérique : Fig.4.2 et 4.3

Figure 4.2: Carte de la gravimétrie régionale de Bouguer des États-Unis d’Amérique composée d’ondes de longueur plus grande que 250 km. L’intervalle des lignes de contour est de 20 mgal.

Figure 4.3: Carte montrant les éléments géologiques majeurs observables sur la carte d’anomalie gravimétrique.
4.1. Levés régionaux et tectoniques

Amérique du sud : Fig. 4.4 et 4.5

Figure 4.4: Amérique du sud.

Figure 4.5: Carte géologique de l’Amérique du sud.
4.1.2 Études régionales

L'information gravimétrique permet de caractériser les provinces géologiques et de suivre leurs tracés si l'opposition est faible.

État de Washington : Fig.4.6

Figure 4.6: Gravimétrie régionale de Bouguer de l’ouest de l’État de Washington (partie ouest). L'intervalle de lignes de contour est de 5 mgal. Elle indique un minimum coïncidant avec la chaîne des Cascades, un maximum avec la Coast Range et un minimum avec Puget Sound et Olympic Mountains.
Vallée Owens en Californie : Fig. 4.7

Figure 4.7: Gravimétrie de Bouguer du sud de la Vallée Owens en Californie ainsi que la relation à la géologie de cette région. Les contours montrent un minimum fermé asymétrique avec son axe au centre de la vallée. La gravité est faible dans les régions riches en aluminium, dont l’origine a été interprétée comme provenant d’une épaissse dépression sédimentaire (sédiments clastiques). L’interprétation indique que le socle est faille et est couvert au centre par presque 10,000 de sédiments.

4.2 Pétrole

Dans ce cas, on cherche des structures pièges : dômes de sel, anticlinaux, formations récifales ("reef") ou à connaître l’épaisseur des sédiments ou d’un bassin. Le pétrole a été découvert dans des anciennes formations récifales de calcaire et on s’est intéressé à connaître leur signature en gravité. Ceci n’est possible que s’il y a contraste de densité ρ entre la formation récifale et les roches sédimentaires qui l’entourent. Malheureusement, la densité et porosité du calcaire et du matériel de remplacement sont si variables qu’il n’y a pas de règles générales ; seulement, dépendant du contexte et de la situation géographique, on peut développer des signatures particulières.
4.2. Formations récifales

Dawn no 156, Ontario Fig. 4.8 à 4.10

Ce champ est situé dans le bassin de l'Illinois, recouvert de dépôts glaciaires lourds, d'allure irréguliers, pouvant atteindre 30m d’épaisseur. Il n’y a pas de correction de relief, le pays est plat. C’est un bassin primaire avec des couches de sel d’épaisseur variable dans le silurien. Les formations recherchées récifales sont d’âge silurien. Le Précambric donne de larges anomalies de types type régional, dues à des variations de densité du socle.

Stations aux 300m; Erreurs de nivellement $< 15 \text{cm}$; Erreurs de planimétrie $< 8 \text{m}$

Figure 4.8: Carte géologique du sud-ouest de l’Ontario.
Anomalie positive due au calcaire récifal entouré de sel. Le recif silurien, noyé dans le sel (Dawn,156) apparaît décalé largement vers l’ouest. La résiduelle (fig 4.10) permet de le localiser correctement. On savait aussi à l’avance que les récifs siluriens sont souvent alignés et donnent des anomalies circulaires en Ontario. L’anomalie de gravité dans le cas précis peut résulter :

1. Soit d’une accumulation de galets glaciaires.
2. Soit d’une variation de l’épaisseur de sel.
3. Soit de la présence d’un relief. La porosité d’une formation récifale pouvant beaucoup varier, il ne faut pas s’attendre à une localisation précise de l’anomalie recherchée.
La formation récifale recherchée a été découverte à une profondeur de 300m.

Champ de Cement (Oklahoma) Fig.4.11 et 4.12

Difficile à localiser sur l’anomalie de Bouger à cause d’une forte régionale (fig 4.11), la carte de la dérivée seconde (fig 4.12) donne une bonne image de l’anticlinal.

![Figure 4.11: Champ de Cement (Oklahoma). Bouguer avec un intervalle de 0.5 mgal.](image)

![Figure 4.12: Champ de Cement (Oklahoma). Dérivée seconde obtenue avec un pas de 1 km.](image)

4.2.2 Dômes de sel

Grand Saline à l’Est du Texas Fig.4.13

Le dôme de sel du Grand Saline à l’Est du Texas à son sommet à 250’ de la surface. Les corrections d’air libre, Bouguer et de latitude ont été effectuées, mais il n’y a aucun ajustement pour la direction de la régionale. Chaque unité gravimétrique est de 0.1 mgal, alors l’intervalle entre le lignes de contour est de 1 mgal. L’anomalie est négative (fig 4.13). La zone pointillée représente la position de la masse de sel.
Dômes (4) de sel sur la côte du Golfe du Mexique au Texas Fig.4.14 à 4.17

L’anomalie de Bouguer (fig 4.14) donne une image floue et la résiduelle (fig 4.15) qui montre une anomalie négative ne permet pas de séparer les effets des diverses sources. Sur la carte de la dérivée seconde (fig 4.16), calculée avec un pas de 1.8km, les 4 sources apparaissent clairement. Ce traitement est à comparer avec l’exemple théorique des 3 sphères (figure 4.17).
Figure 4.15: Résiduelle.

Figure 4.16: Dérivé seconde.
4.2. Petrole

Figure 4.17: Exemple theorique de la representation par le calcul de la derive Baranov d'une anomalie provoquee par trois spheres pesantes.

4.2.3 Anticlinaux

Anticlinal de Cole Creek (Wyonning 1968) Fig.4.18 et 4.19

La regionale est reguliurement pentee, positive d’est en ouest, brusquement accidentee d’un replat important (fig 4.18). L’anticlinal assez regulier presente une image bien refletee par la residuelle gravimetrique (fig 4.19).

Figure 4.18: Bouguer de la region de cole Creek. Graduation tous les 0.5 mgal.
Anticlinal de Wellington (Colorado) Fig.4.20 à 4.22

L’anticlinal à des flancs assez raides. Son expression est peu visible sur la carte de Bouguer (fig 4.20) à cause de la régionale plane (gradient de 2.2 mgal/mile). La résiduelle obtenue par soustraction de la régionale N-S de l’anomalie de Bouguer marque très nettement l’anticlinal (fig 4.21). Il s’agit d’un cas idéal : fort gradient des isogals, rentrant des courbes très accusé et régulier. Les mesures ont été prises avec un gravimètre sensible à 0.03 mgal.
Figure 4.20: Bouguer de Wellington avec isogrammes tous les 0.2 mgal.
Chapelet d'anticlinaux de Kettleman Hills, Californie (Boyd, 1946) : Fig.4.23 à 4.25

Le chapelet d'anticlinaux est bien dessinés par la résiduelle analytique (fig 4.24) sur une Bouguer à fort gradient (fig 4.23). Il s'agit d'un chapelet d'anticlinaux, disposés NO-SE depuis Kettleman Nord, au nord jusqu'à Hills, au sud. Deux structures sont à l'aplomb
d’un maximum gravimétrique (+), une autre structure, qui appartient au même alignement correspond au contraire à un minimum (-). Cette inversion est due à un changement de faciès stratigraphique du nord au sud. à l’aplomb d’un minimum gravimétrique, on a des argiles à diatomées, très légères, et vers le nord, des marnes plus denses. L’anticlinal occupe le volume situé à l’aplomb d’un maximum de g. Des isobathes (obtenus par forage) (fig 4.25) tracés sur la formation Temblor tous les 500’ (180m) montrent la très bonne corrélation entre la forme de la structure et la carte de Bouguer.

Figure 4.23: Bouguer du Chapelet d’anticlinaux de Kettleman Hills (Californie), contour tous les 0.5 mgal.
Figure 4.24: Résiduelle du Chapelet d’anticlinaux de Kettleman Hills (Californie), contour tous les 0.5 mgal.
4.3 Vallée alluvionnaire

L'objectif ici est de déterminer la géométrie et l'épaisseur du remplissage d'une vallée par les alluvions.

vallée de Portmadoc en Galles du Nord : Fig.4.26 et 4.27

L'épaisseur d'alluvion est dépendante du contraste de densité considéré. On trouve 240 m avec $\Delta \rho = 0.7 g/m^3$ et 360 m avec $\Delta \rho = 0.5 g/m^3$.

Figure 4.25: Isobathes obtenus par forage, sur des horizons présentant des variations brusque de densité. Chapelet d’anticlinaux de Kettleman Hills (Californie).
Figure 4.26: Anomalie de Bouguer, entre Portmadoc et Harlech.
Figure 4.27: Anomalie résiduelle, entre Portmadoc et Harlech.

4.4 Batholite gravimétrique

Batholite granitique : Fig 4.28

Au milieu de volcaniques ou métamorphiques, l’anomalie circulaire est négative alors qu’au milieu de sédimentaires, elle est positive.
4.5 Gisements métalliques

Il faut s'attendre à des anomalies aussi petites que 0.05 mgal économiquement intéressantes. La précision dans les relevés de terrain doit être extrême : c'est à dire des lectures précises au gravimètre et au nivellement. Une erreur de 0.016 mgal est probable sur une simple observation.

Cuba : Fig 4.29

Recherche de minerais de chromite (1945) de densité de $\rho \sim 4.0g/cm^3$ particulièrement favorable à l'exploration par gravimétrie.
4.5. Gisements métalliques

Figure 4.29: Cuba : Anomalie gravimétrique au dessus d’un dépôt connu de chromite. L’intervalle entre les lignes de contour est de 0.05 mgal. Les cercles blanc sont des stations gravimétriques et les noirs sont des trous de forages.

New Hosco, Abitibi (1950) (ouest de Matagami) Fig 4.30

Détermination de l’anomalie en gravité pour mieux évaluer le corps (cuivre, zinc). Il s’agit d’un gisement de 2400’ de long, 20 à 150’ de large et de pendage de 65° à 70°, avec 1,800,000 tonnes à 2.5% de Cu et 780,000 t à 8.15% de Zn.
4.6 Archéologie, travaux publics

Il s'agit bien souvent de caractériser d'anciennes galeries ou cavités (ex : port de Montréal, Louis-Riel). Les mesures sont prises avec une très grande précision. Il faut une précision au cm sur l'altitude (2 à 3 µgal) et d'environ 10 cm sur la position. Le gravimètre doit être également extrêmement précis (5µgal = 0.005 mgal) et sensible (1µgal). Les contrastes de densités sont forts (roche/air) et sont de l'ordre de 1.5 à 2.5 pour des cavités en travaux publics.

Figure 4.30: New Hosco (Abitibi)
4.7 Autres Exemples

Carrière : Fig.4.31

Figure 4.31: Anomalie gravimétique au-desus d’une carrière. Les courbes sont exprimées en 0.01 mgal.

4.7 Autres Exemples

4.7.1 Prolongement et filtrage ; modélisation

Texas (Ouest) : Fig.4.32 à 4.38

Figure 4.32: Localisation : Partie ouest du Texas
Figure 4.33: Anomalie de Bouguer de la partie ouest du Texas. Contours aux 5 mgals

Figure 4.34: Anomalie de Bouguer ; Traitement : Prolongement vers le haut 5 km ; Contours aux 5 mgals
Figure 4.35: Anomalie de Bouguer; Traitement : Filtre Passe-Haut et prolongement vers le haut 2 km (longueurs d’ondes de 80 à 4 km); Contours aux 2mgals

Figure 4.36: Anomalie de Bouguer; Traitement : Filtre Passe-Bas et prolongement vers le haut 2 km (longueurs d’ondes de ∞ à 80 km); Contours aux 5mgals
4.7. Autres Exemples

Figure 4.37: Interprétation d’une coupe EW passant dans le “Salt Basin Grabben” (voir fig 4.36)

Figure 4.38: Interprétation d’une coupe SW-NE passant dans le “Delaware basin” et le “Central basin platform” (voir fig 4.36)

4.7.2 Modélisation

Grenville Fig.4.39 et 4.40

Une des anomalies négatives majeures du Canada poursuit le front du Grenville sur environ 1200 km (Voir article de Thomas).
4.7. Autres Exemples

Figure 4.39:

Fig. 1. Simplified geologic map of Grenville province and adjacent marginal areas of Southern, Superior, Churchill, and Nain provinces. AGB = Abitibi greenstone belt; MB = Mistassini basin; OB = Otish Mountains basin; NFB = Naskaupi fold belt; A = Atikokan Group; LT = Labrador trough; SLT = Southern Labrador trough; GFB = Grenville foreland belt; GFTZ = Grenville front tectonic zone. G-G' = line of gravity profile and model (Figure 4a, b).

Fig. 2. Simplified Bouguer gravity-anomaly map of Grenville province and marginal areas of neighboring provinces; contour interval, 20 mGal. Seismic-line key: BF = Berry and Fuchs (1973); MI = Mercier and Jobidon (1971). Crustal thicknesses are in kilometers. G-G' = line of gravity profile and model (Figure 4a, b).

Fig. 4. a. Observed gravity profile G-G' (Figure 2) across Grenville front and gravity profile (calculated) corresponding to crustal model in b. GF = Grenville front.

b. Crustal model interpreted from observed gravity profile shown in a. Horizontal bars represent positions of Mohorovičić discontinuity as determined by Berry and Fuchs (1973). Solid bars = true horizontal positions; hollow bar = position extrapolated from just outside limit of model (see Figure 3).

c. Schematic crustal section based on b. Heavy continuous lines represent faults in Grenville front tectonic zone (GFTZ); heavy broken lines represent cleavages and faults in Grenville foreland belt.
Figure 4.40:

Figure 6. a. Average gravity profile over five province boundaries in the Canadian shield and its interpretive model (after Gibb and Thomas, 1976). b. Gravity profile over the Kalahari line (solid line) and the theoretical anomaly (dashed line) computed for the crustal model shown. T = Tshane complex (2.98 g/cm²), K = Kheis belt (2.93 g/cm²), P1 and P2 = Proteanite cover rocks (2.93 and 3.08 g/cm², respectively).
Domaine volcanique Fig.4.41 à 4.48

Figure 4.41:

Figure 4.42:

Figure 4.43:
4.7. Autres Exemples

Figure 4.44:

Figure 4.45:

Figure 4.46:
4.7.3 Applications : Étude de cas

Articles à consuler

- V.K. Gupta and F.S. Grant, Mineral-exploration aspects of gravity and aeromagnetic survey in the Sudbury-Cobalt area, Ontario
Chapitre 5

Références

- **Adller, J.L.** [1941]. Simplification of Tidal Corrections for gravity meter-surveys. Annual Meeting, Houston, Texas, Avril 1941.
- **Hinze, W.J.** [1985]. The utility of regional Gravity and Magnetic anomaly maps. Society of Exploration Geophysicists
- **Schoeffler J.** [1975]. Gravimétrie appliquée aux recherches structurales et à la prospection pétrolière et minière. Editions Technip.
Annexe A

Correction de latitude

L’équation pour \(g(\varphi) \) s’écrit sous la forme

\[
g(\varphi) = c_1 \left[1 + c_2 \sin^2 \varphi + c_3 \sin^2 2\varphi \right]
\]

(A.1)

Donc

\[
\frac{dg}{d\varphi} = c_1 \left[2c_2 \sin \varphi \cos \varphi + 4c_3 \sin 2\varphi \cos 2\varphi \right]
\]

\[
= c_1 \left[c_2 \sin 2\varphi + 2c_3 \sin 4\varphi \right]
\]

(A.2)

En considérant que \(l = R\varphi \), alors

\[
\frac{dl}{d\varphi} = R
\]

(A.3)

et donc

\[
\frac{dg}{dl} = \frac{dg}{d\varphi} \frac{d\varphi}{dl} = \frac{c_1}{R} \left[c_2 \sin 2\varphi + 2c_3 \sin 4\varphi \right]
\]

(A.4)

En prenant \(c_1 = 978.0524 \) \(\text{gals} \), \(c_2 = 5.297 \times 10^{-3} \), \(c_3 = -5.9 \times 10^{-6} \) et \(R = 6367 \) \(\text{km} \) (I.U.G.G. 1967), on obtient :

\[
\frac{dg}{dl} = \left[8.137 \times 10^{-4} \sin 2\varphi - 1.813 \times 10^{-6} \sin 4\varphi \right]
\]

\[
= 0.081 \sin(2\varphi) \times dl \text{ mgal/100m}
\]

(A.5)
Annexe B

Obtenir la latitude géocentrique par rapport à la latitude géographique

Considérons l’équation de l’ellipse d’axes a et b :

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] (B.1)

En choisissant le changement de variable

\[x = r \cos \varphi \quad \text{et} \quad y = r \sin \varphi \] (B.2)

l’équation de l’ellipse s’écrit

\[\frac{r^2 \cos^2 \varphi}{a^2} + \frac{r^2 \sin^2 \varphi}{b^2} = 1 \] (B.3)

d’où l’on déduit

\[r^2 = \frac{a^2 b^2}{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi} \] (B.4)

et donc,

\[x = \frac{ab \cos \varphi}{\sqrt{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi}} \] (B.5)

De même, on a

\[y = \frac{b}{a} \sqrt{a^2 - x^2} \] (B.6)

Soit

\[\frac{dx}{dy} = \left(\frac{b}{a} \right) \left(\frac{1}{2} \right) (-2x) (a^2 - x^2)^{-1/2} = -\frac{b}{a} \frac{x}{\sqrt{a^2 - x^2}} \] (B.7)
Par conséquent

\[
\frac{dx}{dy} = \left(-\frac{b}{a} \right) \left[\frac{ab \cos \varphi}{\sqrt{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi}} \right] \left[\sqrt{a^2 - \left(\frac{ab \cos \varphi}{\sqrt{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi}} \right)^2} \right]^{-1}
\]

\[
= \left(-\frac{b}{a} \right) \left[\frac{ab \cos \varphi}{\sqrt{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi}} \right] \left[\sqrt{\frac{a^4 \sin^2 \varphi}{(\sqrt{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi})^2}} \right]^{-1}
\]

\[
= \left(-\frac{b}{a} \right) \left[\frac{ab \cos \varphi}{\sqrt{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi}} \right] \left[\sqrt{\frac{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi}{a^2 \sin \varphi}} \right]
\]

\[
= \frac{-b^2 \cos \varphi}{a^2 \sin \varphi}
\]

(B.8)

Il est donc maintenant possible de calculer \(\psi \) :

\[
\psi = - \arctan \left(-\frac{dx}{dy} \right) = - \arctan \left(-\frac{b^2 \cos \varphi}{a^2 \sin \varphi} \right)
\]

(B.9)

Puisque \(\theta = \pi/2 - \psi \), alors

\[
\theta = \pi/2 + \arctan \left(-\frac{b^2 \cos \varphi}{a^2 \sin \varphi} \right)
\]

(B.10)

Ainsi

\[
\varphi = \arctan \left[-\frac{b^2 \cos(\theta - \pi/2)}{a^2 \sin(\theta - \pi/2)} \right]
\]

(B.11)

Comme \(\cos(\theta - \pi/2) = \sin \theta \) et \(\sin(\theta - \pi/2) = -\cos \theta \), alors

\[
\varphi = \arctan \left[\frac{b^2}{a^2 \tan \theta} \right]
\]

(B.12)

avec \(a = r_e = 6378.139 \ km \) et \(b = r_p = 6356.754 \ km \).
Annexe C

Système de coordonnées et Théorèmes fondamentaux

C.1 Coordonnées cartésiennes

- Élément de déplacement :
 \[\vec{dl} = dx\vec{i} + dy\vec{j} + dz\vec{k} \] (C.1)
- Élément de surface (plan parallèle à x0y seulement) :
 \[ds = dxdy \] (C.2)
- Élément de volume :
 \[dv = dxdydz \] (C.3)
- Gradient de \(\phi \) :
 \[\nabla\phi = \frac{\partial\phi}{\partial x}\vec{i} + \frac{\partial\phi}{\partial y}\vec{j} + \frac{\partial\phi}{\partial z}\vec{k} \] (C.4)
- Divergence de \(\vec{V} \) :
 \[\nabla \cdot \vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z} \] (C.5)
- Rotationnel de \(\vec{V} \) :
 \[\nabla \times \vec{V} = \left[\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z} \right] \vec{i} + \left[\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x} \right] \vec{j} + \left[\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \right] \vec{k} \] (C.6)
- Laplacien de \(\phi \) :
 \[\nabla^2\phi = \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} + \frac{\partial^2\phi}{\partial z^2} \] (C.7)

C.2 Coordonnées cylindriques

- Équations de transformation :
 \[
 \begin{align*}
 x &= r \cos \theta \\
 y &= r \sin \theta \\
 z &= z
 \end{align*}
 \] (C.8)
C.3 Coordonnées sphériques

- Élément de déplacement :
\[
\vec{dl} = dr\vec{a}_r + r d\theta \vec{a}_\theta + dz \vec{k}
\] (C.9)

- Élément de surface (cylindre d’axe Oz seulement) :
\[
ds = r d\theta dz
\] (C.10)

- Élément de volume :
\[
dv = r dr d\theta d\phi
\] (C.11)

- Gradient de \(\phi\) :
\[
\nabla \phi = \frac{\partial \phi}{\partial r} \vec{a}_r + \frac{1}{r} \frac{\partial \phi}{\partial \theta} \vec{a}_\theta + \frac{\partial \phi}{\partial z} \vec{a}_z
\] (C.12)

- Divergence de \(\vec{V}\) :
\[
\nabla \cdot \vec{V} = \frac{1}{r} \frac{\partial}{\partial r} (r V_r) + \frac{1}{r} \frac{\partial V_\theta}{\partial \theta} + \frac{\partial V_z}{\partial z}
\] (C.13)

- Rotationnel de \(\vec{V}\) :
\[
\nabla \times \vec{V} = \frac{1}{r} \left[\frac{\partial V_z}{\partial \theta} - \frac{\partial V_\theta}{\partial z} \right] \vec{a}_r + \left[\frac{\partial V_\theta}{\partial z} - \frac{\partial V_z}{\partial r} \right] \vec{a}_\theta + \frac{1}{r} \left[\frac{\partial}{\partial r} (r V_r) - \frac{\partial V_\theta}{\partial \theta} \right] \vec{k}
\] (C.14)

- Laplacien de \(\phi\) :
\[
\nabla^2 \phi = \frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial \phi}{\partial r} \right] + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial^2 \phi}{\partial z^2}
\] (C.15)

C.3 Coordonnées sphériques

- Équations de transformation :
\[
\begin{cases}
x &= r \sin \theta \cos \varphi \\
y &= r \sin \theta \sin \varphi \\
z &= r \cos \theta
\end{cases}
\] (C.16)

- Élément de déplacement :
\[
\vec{dl} = dr \vec{a}_r + r d\theta \vec{a}_\theta + r \sin \theta d\varphi \vec{a}_\varphi
\] (C.17)

- Élément de surface (sphère de centre O seulement) :
\[
ds = r^2 \sin \theta d\theta d\varphi
\] (C.18)

- Élément de volume :
\[
dv = r^2 \sin \theta dr d\theta d\varphi
\] (C.19)

- Gradient de \(\phi\) :
\[
\nabla \phi = \frac{\partial \phi}{\partial r} \vec{a}_r + \frac{1}{r} \frac{\partial \phi}{\partial \theta} \vec{a}_\theta + \frac{1}{r \sin \theta} \frac{\partial \phi}{\partial \varphi} \vec{a}_\varphi
\] (C.20)
C.4 Théorèmes fondamentaux

- Divergence de \vec{V} :

$$\nabla \cdot \vec{V} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 V_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta V_\theta) + \frac{1}{r \sin \theta} \frac{\partial V_\varphi}{\partial \varphi} \quad (C.21)$$

- Rotationnel de \vec{V} :

$$\nabla \times \vec{V} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta V_\varphi) - \frac{\partial V_\theta}{\partial \varphi} \right] \vec{a}_r + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial V_r}{\partial \varphi} - \frac{\partial}{\partial r} (r V_\varphi) \right] \vec{a}_\theta + \frac{1}{r} \left[\frac{\partial}{\partial r} (r V_\theta) - \frac{\partial V_r}{\partial \theta} \right] \vec{a}_\varphi \quad (C.22)$$

- Laplacien de ϕ :

$$\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial \phi}{\partial r} \right] + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta \frac{\partial \phi}{\partial \theta} \right] + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \phi}{\partial \varphi^2} \quad (C.23)$$

C.4 Théorèmes fondamentaux

- Théorème de Gauss :

$$\oint_S \vec{U} \cdot \vec{d}s = \iint_V (\nabla \cdot \vec{U}) dv \quad (C.24)$$

- Théorème de Stokes :

$$\oint_C \vec{U} \cdot \vec{d}s = \iint_V (\nabla \times \vec{U}) \cdot \vec{d}s \quad (C.25)$$

- Première identité de Green :

$$\oint_S (\varphi \nabla \psi) \cdot \vec{d}s = \iint_V [(\nabla \varphi \cdot \nabla \psi) + (\varphi \nabla^2 \psi)] \, dv \quad (C.26)$$

- Deuxième identité de Green :

$$\oint_S [\varphi \nabla \psi - \psi \nabla \varphi] = \iint_V [\varphi \nabla^2 \psi - \psi \nabla^2 \varphi] \, dv \quad (C.27)$$
Annexe D

Exercices

D.1 Réduction de données gravimétriques

Les données ci-jointes furent obtenues au-dessus d’un gisement de sulfures massifs près de Noranda. A partir des données du tableau A on obtient la dérive de l’appareil à chaque station de base en comparant la lecture corrigée établie dans la partie A et la lecture obtenue lors de mesures subséquentes. La dérive aux autres stations est obtenue en interpolant entre les valeurs de la dérive aux stations de base.

<table>
<thead>
<tr>
<th>Station</th>
<th>Heure</th>
<th>Lecture (div.)</th>
<th>Corr. diurne (div.)</th>
<th>Lecture corrigée (div.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +00 E</td>
<td>13h41</td>
<td>34.8</td>
<td>0.0</td>
<td>34.8</td>
</tr>
<tr>
<td>6 +00 E</td>
<td>13h53</td>
<td>39.3</td>
<td>-0.2</td>
<td>39.1</td>
</tr>
<tr>
<td>1 +00 E</td>
<td>14h02</td>
<td>35.1</td>
<td>-0.3</td>
<td>34.8</td>
</tr>
<tr>
<td>6 +00 E</td>
<td>14h16</td>
<td>39.8</td>
<td>-0.5</td>
<td>39.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.8</td>
<td>-0.6</td>
<td>39.2</td>
</tr>
<tr>
<td>12+00 E</td>
<td>13h31</td>
<td>22.6</td>
<td>-0.8</td>
<td>21.8</td>
</tr>
<tr>
<td>6 +00 E</td>
<td>14h42</td>
<td>40.1</td>
<td>-0.9</td>
<td>39.2</td>
</tr>
<tr>
<td>12+00 E</td>
<td>14h50</td>
<td>23.2</td>
<td>-1.0</td>
<td>22.2</td>
</tr>
</tbody>
</table>

Complétez le tableau B des données en corrigeant les lectures de l’erreur de dérive. Calculez les valeurs relatives de la gravité observée en multipliant les lectures corrigées par la constante de l’appareil ($K = 0.1074 \text{ mgals/div.}$).
<table>
<thead>
<tr>
<th>Station</th>
<th>Lecture (div.)</th>
<th>Corr. diurne (div.)</th>
<th>Lecture corrigée (div.)</th>
<th>Δg_{obs} (mgals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12+00 E</td>
<td>23.7</td>
<td>-1.7</td>
<td>22.0</td>
<td>2.3</td>
</tr>
<tr>
<td>11+00 E</td>
<td>24.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10+00 E</td>
<td>27.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 +00 E</td>
<td>36.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 +00 E</td>
<td>49.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 +00 E</td>
<td>45.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 +00 E</td>
<td>41.2</td>
<td>-2.0</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td>5 +00 E</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 +00 E</td>
<td>39.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 +00 E</td>
<td>38.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 +00 E</td>
<td>38.6</td>
<td>-2.2</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td>1 +00 E</td>
<td>37.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On peut maintenant calculer l’anomalie Bouguer en appliquant la correction appropriée. Si on suppose que le terrain possède une densité moyenne de 2.70 g/cm³. La correction combinée d’altitude et de Bouguer est égale à 0.0594 mgals/pi. Complétez le tableau C en appliquant cette correction. Comme le profil est orienté E-O, la correction de latitude n’est pas nécessaire. Étant donné que le terrain de prospection est peu accidenté, on peut aussi négliger la correction topographique.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +00</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 +00</td>
<td>60.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 +00</td>
<td>60.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 +00</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 +00</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 +00</td>
<td>52.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 +00</td>
<td>50.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 +00</td>
<td>46.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 +00</td>
<td>34.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10+00</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11+00</td>
<td>17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12+00</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.2 Corrections gravimétriques

Faire les corrections de dérive, latitude, altitude et plateau des données présentées dans le tableau. Reportez dans le tableau la valeur de la correction et non pas la valeur de l’anomalie corrigée. Calculez ensuite l’anomalie de Bouguer pour chacune des stations.

La latitude de la station 0+00 est 48° 45’10” et le profil est orienté suivant la direction N30E. On utilisera une densité de $\rho_B = 2.67 \, g/cm^3$.

<table>
<thead>
<tr>
<th>Station</th>
<th>alt. (m)</th>
<th>Δg_{mes} (mgal)</th>
<th>heure (hhmm)</th>
<th>Δt (min)</th>
<th>Δh (m)</th>
<th>Δg_{der} (mgal)</th>
<th>Δg_{lat} (mgal)</th>
<th>Δg_{alt} (mgal)</th>
<th>Δg_{pla} (mgal)</th>
<th>Δg_B (mgal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+50 N</td>
<td>100.64</td>
<td>106.89</td>
<td>10h30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2+25 N</td>
<td>100.46</td>
<td>106.99</td>
<td>10h35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2+00 N</td>
<td>102.01</td>
<td>106.80</td>
<td>10h39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+75 N</td>
<td>100.37</td>
<td>107.23</td>
<td>10h46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+50 N</td>
<td>99.57</td>
<td>107.47</td>
<td>10h54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+25 N</td>
<td>101.52</td>
<td>107.18</td>
<td>10h58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+00 N</td>
<td>104.76</td>
<td>106.53</td>
<td>11h03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+75 N</td>
<td>103.52</td>
<td>106.90</td>
<td>11h14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+50 N</td>
<td>104.48</td>
<td>106.78</td>
<td>11h31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+25 N</td>
<td>105.06</td>
<td>106.60</td>
<td>11h35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+00</td>
<td>104.79</td>
<td>106.65</td>
<td>11h40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+25 S</td>
<td>104.01</td>
<td>106.82</td>
<td>11h47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+50 S</td>
<td>103.77</td>
<td>106.95</td>
<td>11h50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+75 S</td>
<td>103.79</td>
<td>107.05</td>
<td>11h59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+00 S</td>
<td>104.38</td>
<td>107.10</td>
<td>12h07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+25 S</td>
<td>104.73</td>
<td>107.19</td>
<td>12h10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+50 S</td>
<td>105.35</td>
<td>107.16</td>
<td>12h15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+75 S</td>
<td>106.48</td>
<td>107.11</td>
<td>12h18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2+00 S</td>
<td>107.71</td>
<td>107.05</td>
<td>12h28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2+25 S</td>
<td>108.46</td>
<td>107.19</td>
<td>12h39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2+50 S</td>
<td>100.64</td>
<td>107.65</td>
<td>12h59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.3 Calcul modélisation

D.3.1 Collecteur d’égouts

À quelle profondeur maximale doit se trouver le toit un collecteur d’égouts de 4 m de rayon si l’on veut le détecter à l’aide d’un gravimètre de sensibilité de 0.05 mgal. On supposera le tuyau horizontal. La roche encaissante a une densité de $\rho = 2.2 \, g/cm^3$.

D.3.2 Produits toxiques

On suppose qu’un baril contenant des produits toxiques est enfoui verticalement dans le sol à une profondeur d’environ 4 m (profondeur du toit). Celui-ci aurait un rayon de 0.2 m pour
une hauteur de 1 m. La densité de l’encaissant et du contenant du baril sont respectivement $\rho = 2.2 \, g/cm^3$ et $\rho = 0.8 \, g/cm^3$.
Pouriez vous le détecter à l’aide d’un gravimètre de sensibilité de 0.01 mgal ?
On rappel que l’anomalie maximale d’un cylindre vertical est :

$$\Delta g_{\text{max}} = 2\pi G \Delta \rho \left(L + \sqrt{z^2 + R^2} - \sqrt{(z + L)^2 + R^2} \right)$$

où z est profondeur du toit ; R le rayon du cylindre et L la hauteur du cylindre.